

Utrecht University Final version internship report

Towards emission free traffic in Amsterdam

An assessment of the potential of electric vehicle charging with renewable energy

Internship Energy Science, Utrecht University

Date Author Contact Supervisor Utrecht University Supervisor City of Amsterdam September 20th, 2017 Lennard Visser (5704375) I.r.visser@students.uu.nl dr. Wilfried van Sark Art van der Giessen

Abstract

Local traffic is found to form a significant contribution to the emission of greenhouse gases and other pollutants in Amsterdam. The City of Amsterdam strives to have a clean and healthy environment and, therefore, aims to decrease local emissions. The increase usage of electric vehicles (EV) brings along the opportunity to reduce emissions from local traffic, by charging EVs with renewable power. Subsequently, the City of Amsterdam is exploring the potential of smart charging solutions as part of the SEEV4-City project to increase the amount of solar power used for charging EVs. At this moment, static smart charging is introduced at multiple charging points in Amsterdam. This research evaluates the effect of the implementation of static smart charging (which is a predefined profile of the charging power available at a charging point, where the power at a charging point is decreased between 8:00-9:00 and 17:00-20:00 and raised at other moments) on the potential uptake of solar and wind power in EVs for the period 2016-2035. Subsequently, the research estimates the impact of static smart charging on CO₂-emissions related to the use of EVs.

On the short term it is found that the introduction of static smart charging has the potential to increase the share of solar power for charging EVs. As a result, an additional 15 tonnes of CO₂ could be saved annually by 2020. This approaches the objective of 17 tonnes, which is the objective of the SEEV4-City project. After 2020, the uptake of solar power is higher when regular charging is applied in comparison to static smart charging. This is due to a decreasing charging demand between 17:00-20:00 and a higher fluctuating electricity demand during the day. Furthermore, the uptake of electricity from wind power for regular charging exceeds that for static smart charging during the full simulation period. Consequently, overall on the short and long term CO₂-emissions are found to increase when a static smart charging scheme is managed.

Additional research is needed to determine the impact of electricity demand by third parties on the availability of renewable energy. Nevertheless, the results indicate potential for a positive effect of static smart charging on the uptake of solar power, due to an increase in the available charging power during the day. Moreover, adjustments to the introduced static smart charging scheme are needed to utilize this potential more effectively. With regard to wind power, it is found that a constant charging power is preferred. On the basis of the research findings, it is recommended to adjust the static smart charging profile according to the charging point utilization and the capacity of renewables that are available.

Contents

Abstract1
Contents
List of tables
List of figures
Units
List of abbreviations
Terms
1 Introduction7
1.1 Problem definition8
1.2 Scope and boundaries
1.3 Research relevance9
1.4 Research outline9
2. SEEV4-City
3. Methods
3.1 Overview of supply and demand11
3.1.1 Solar power supply11
3.1.2 Wind power supply12
3.1.3 Energy demand by EVs13
3.2 Potential for static smart charging14
3.2.1 Static smart charging in 201614
3.2.2 EV, and solar and wind power growth14
3.4 Obstacles for EV charging with solar and wind power14
3.5 Key performance indicators14
KPI I: Renewable charge14
KPI II: CO ₂ -emissions avoided14
4. Data input15
4.1 Solar power
4.1.1 Solar Power in Amsterdam15
4.1.2 Solar Power growth15
4.2 Wind Power15
4.2.1 Wind power in Amsterdam15
4.2.2 Wind Power growth16
4.2 Electric Vehicles17
4.2.1 EV characteristics
4.2.2 EV growth17

5. Results	
5.1 Energy supply	
5.1.1 Solar power supply	
5.1.2 Wind power supply	20
5.1.3 Renewable power supply	21
5.2 Energy demand	22
5.2.1 Distribution of EV charging demand	23
5.2.2 EV charging behaviour	23
5.2.3 Regular and static smart charging	26
5.2.4 Future EV charging	27
5.3 Matching demand and supply per neighbourhood	28
5.3.1 Annual supply and demand	28
5.3.2 Actual sustainable charge in 2016	29
5.3.3 Future potential of sustainable charge	30
5.3.4 Static smart charging in Amsterdam	33
5.4 Optimization for static smart charging	33
5.4.1 Solar power charging	34
5.4.2 Wind power charging	35
5.4.3 Renewable charging	35
5.4.4 Renewable charging per neighbourhood	35
6. Discussion	37
6.1 Data quality	37
6.1.1 Solar power production	37
6.1.2 Wind power production	37
6.1.3 Charging demand	37
6.2 Research limitations	37
6.2.1 Solar power	37
6.2.2 Wind power	
6.2.3 Charging demand	
6.2.4 Electricity demand	
6.3 Research implications	
6.3.1 Solar and wind power in EV charging	
6.3.2 SEEV4-City objective	40
6.3.3 Energy autonomy	40
6.3.4 Policy development	40
7. Conclusion & Recommendations	42

References	43
Appendix	45
A.1 Energy supply and demand per neighbourhood combination	45
A.2 EV charging characteristics	47
A.3 Annual hourly electricity supply and demand	47
A.4 Assumptions	53

List of tables

Table 1 Time dependent charging power at charging point	14
Table 2 PV panel characteristics	15
Table 3 Wind turbines in Amsterdam	15
Table 4 Wind power characteristics	16
Table 5 Conditions for EV labelling	17
Table 6 Charging behaviour per vehicle	27
Table 7 Electricity demand and supply per city district for 2016	28
Table 8 Potential solar and wind power contribution in EV charging for 2016	30
Table 9 Difference in CO ₂ -emissions between regular and static smart charging	30
Table 10 Potential solar and wind power contribution in EV charging	32
Table 11 Difference in CO ₂ -emissions between regular and static smart charging	33
Table 12 Difference in CO ₂ -emissions between regular and static smart charging	33

List of figures

Figure 1 Overview of research methodology	11
Figure 2 Expected growth of solar and wind power	16
Figure 3 EV growth in the Netherlands	17
Figure 4 Solar power production per city district for 2016	19
Figure 5 Solar power production	20
Figure 6 Wind power production per city district for 2016	20
Figure 7 Wind power production	21
Figure 8 Electricity supply by solar, wind and renewable power	22
Figure 9 EV charging demand per city district for 2016	23
Figure 10 EV charging behaviour on the SEEV4-City charging points 2016	24
Figure 11 EV charging sessions	24
Figure 12 EV charging profile per charging point	25
Figure 13 Distribution charging point clusters	26
Figure 14 Daily distribution of EV charging demand on the SEEV4-City charging points in 2016	26
Figure 15 Future EV charging demand	27
Figure 16 Density plot of average daily distribution of electricity supply and demand in 2016	29
Figure 17 Annual electricity supply and demand	31

Units

Ampere
hour
Volt
Watt
Watt hour (kilowatt hour)
Watt peak (kilowatt peak)

List of abbreviations

EC	Soot
EV	Electric vehicle
FEV	Full electric vehicle
KNMI	Royal Netherlands Meteorological Institute
RFID	Radio Frequency Identification card
PHEV	Plug-In hybrid electric vehicle
PM10	Particulate matter 10
SEEV4-City	Smart, clean Energy and Electric Vehicles for the City
V2B	Vehicle-to-business
V2C	Vehicle-to-city
V2G	Vehicle-to-grid
V2H	Vehicle-to-home
V2N	Vehicle-to-neighbourhood/street

Terms

District	City district
Neighbourhood	Sub-districts (in Dutch "Buurtcombinatie")
Regular charging	Standard charging power managed at charging points (see table 1)
Static smart charging	Charging power profile managed at charging points in the pilot (see table 1)

1 Introduction

Worldwide the transport sector is found to be responsible for approximately a quarter of the emissions of greenhouse gasses (GHG) and air pollutants (Cronin et al., 2015). Respectively, these form a significant contribution to global warming and harm human health especially in urban areas (EEA, 2014; Milieudefensie, 2016). The emissions that arise from the transport sector are ascertained to originate for more than 95% from road traffic (Coenen et al., 2016). As a result, the air quality is found to be most problematic near roads in urban areas.

The city of Amsterdam is no exception to this. The air quality is classified as unhealthy and forms a threat to public health. Moreover, the concentration of some pollutants do not meet European regulations nor standards adopted by the World Health Organization (Knol, 2016). Van der Giessen & Van der Linden (2016) stated that motorised traffic causes up to half of the air pollution in certain areas in Amsterdam. Moreover, road traffic is found to be responsible for about 25% of nitrogen dioxide (NO₂), 25% of soot (EC) and 7% of particulate matter 10 (PM10) emissions (City of Amsterdam, 2015b). This is accompanied with an increasing amount of carbon dioxide (CO₂) emissions over the last few years, which was equal to 820 kilotons in 2013 (Janssens & Koelemij, 2014). In addition, road traffic forms a significant contribution to local hydrocarbon (HC) emissions (City of Amsterdam, 2015b; van der Giessen & van der Linden, 2016).

The City of Amsterdam strives to have a clean and healthy environment, which is to be achieved by decreasing emissions. In order to decrease air pollution the City has defined a pathway including multiple targets to increase the integration of sustainable energy technologies. The most important aspects of the plan include an emission free transport system in 2025 and CO₂-emission reductions of 40 and 75% in 2020 and 2040 respectively, with respect to 1990 levels. The wide adoption of electric vehicles (EV) forms a major opportunity to reduce the emission of local air pollutants and to increase the amount of zero emission kilometres (City of Amsterdam, 2015b). Moreover, previous research demonstrates that EVs have the potential to form a considerable contribution to decrease global CO₂-emissions (Cronin et al., 2015; Van Vuuren et al. 2017).

In order to achieve the desired decrease in CO_2 -emissions EVs should be charged with renewable energy. At this moment, a total solar power capacity of 24 MWp is installed in Amsterdam (Readaar, 2017). Moreover, Amsterdam aims to increase the installed capacity to 160 MWp and 1,000 MWp in respectively 2020 and 2040. Wind power capacity currently accounts for 67 MW in Amsterdam and is planned to be expanded to 85 MW in 2020 and 405 MW in 2040 (City of Amsterdam, 2015b).

In theory, EVs in Amsterdam are charged with electricity from wind power. This means that an equal amount of electricity consumed for EV charging is bought from wind power production. However, charging points manage constant charging power outputs and the production profile of (solar and) wind power does not match the electricity demand pattern of EVs at all times (Geerts et al., 2016). As a result, in practice EVs are not merely charged with renewable energy and EVs indirectly emit CO₂. In order to reduce CO₂-emissions from road traffic, smart charging solutions are needed that match the electricity demand and supply. These solutions should allow for EVs to be charged with electricity derived from solar panels or wind turbines. To accelerate the development and introduction of smart charging solutions, the City of Amsterdam hosts a pilot that focuses on the development of these solutions. The pilot is part of the European funded SEEV4-City project, which aims to develop smart charging solutions that induce load balancing of the low voltage grid, raise local energy autonomy and increase the share of renewable energy in EVs (for more information about SEEV4-City see chapter 2).

1.1 Problem definition

The mismatch between the production of renewable energy and the electricity demand by EVs forms a challenge in reducing CO₂-emissions from road traffic in Amsterdam. The ability to overcome this lies in the adoption of smart charging solutions. A first step to develop these solutions is set in the current stage of the SEEV4-City pilot that is hosted in the city of Amsterdam, which considers the introduction of a static smart charging profile, which sets a time-dependent maximum charging rate (see chapter 3). However, at this point it is unknown to what extend this will contribute to an increase in the deployment of renewable energy for EV charging and achieve the desired CO₂-emission reduction. The goal of this research is to assess the potential for EV charging with renewables. Subsequently, the aim of the research is to answer the question:

What is the potential of static smart charging to increase the utilization of solar and wind power for EV charging and decrease CO₂-emission by (local) traffic in Amsterdam for the period 2016-2035?

The potential of static smart charging to decrease CO_2 -emissions and increase the use of renewable energy in EV charging is assessed by comparison with the current charging scheme applied, referred to as regular charging. In order to answer the research question the following sub questions are addressed:

- 1. What is the annual solar and wind power generation in Amsterdam for the period 2016-2035, and how is the generation distributed throughout the year?
- 2. What is the current EV charging demand and how is this expected to develop until 2035?
- 3. What is the current and future maximum share of renewable energy in EV charging when respectively regular and static smart charging are applied, considering a growing capacity of solar and wind power and an increasing number of EVs?
- 4. What are the main obstacles to increase the share of renewable energy in EV charging and how can these be overcome?

1.2 Scope and boundaries

The research focuses on the city of Amsterdam. More specifically, it considers the locations that are reviewed in the SEEV4-City pilot. As a result, a first boundary of the research is described by these charging points. This implies that the charging behaviour at other charging points is not considered.

The research only considers the allocation of EVs and therewith discards other forms of transportation. Moreover, in order to estimate the future EV charging demand, focus is put on large battery full electric vehicles (battery capacity >40 kWh). This is substantiated as large battery FEVs are considered to be the standard EVs in the future (Cuijpers et al., 2016), and supported as FEVs are found to be responsible for the bulk of the electricity demand by EVs at the selected charging points (Amsterdam University of Applies Sciences, 2017).

In this research other forms of electricity demand, such as electricity demand by residents, are not considered. Consequently, all electricity flows except those caused by solar and wind power production and EV charging demand are discarded. This means that all produced solar and wind power is assumed to be available for EV charging.

Due to a lack of information regarding the electricity demand and the electricity grid, the generation and availability of renewable energy by solar and wind is proportionally divided over the

charging points in Amsterdam. This implies that in this research each charging point has access to the total installed capacity of solar and wind power divided by the total number of charging points.

1.3 Research relevance

This research aims to identify the potential of static smart charging to increase the uptake of renewable energy and therewith decrease CO₂-emissions by road traffic. Consequently, it provides insights into the feasibility of the objectives as set by the City of Amsterdam and the SEEV4-City pilot. Additionally, the research provides information on how to increase the utilization of renewables in EV charging and expose possible challenges to achieve the desired results.

Although the findings relate to the city of Amsterdam, more general recommendations that apply to other cities or regions may be given. Consequently, the research forms a contribution to charging EVs with renewable electricity independent of the location. Additionally, it contributes to area of research that looks into the field of avoiding grid reinforcements, on how to increase the energy autonomy and reduce the local dependence on the transformer station by the application of static smart charging.

1.4 Research outline

The next chapter elaborates on the objectives of the SEEV4-City project and the project pilots. Thereafter, in chapter 3 the means of data collection and data analysis are discussed. Chapter 4 data presents the data input. Thereafter, in chapter 5 the results are discussed. This is followed by the discussion (chapter 6) and conclusion (chapter 7). References and appendices are given at the end.

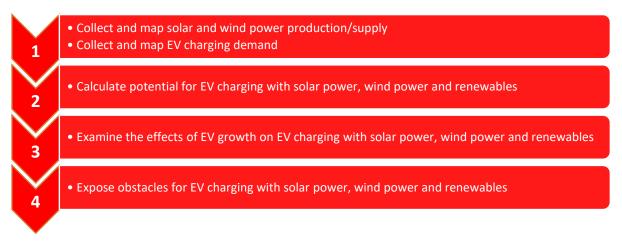
2. SEEV4-City

"Smart, clean Energy and Electric Vehicles for the City" (SEEV4-City) is an Interreg research project funded by the North Sea Region programme 2014-2020 and the project partners¹. The project aims to contribute to green city development by decreasing local emissions and increasing the use of renewable energy. This is to be achieved by developing smart energy solutions that effectively deploy and combine EVs and local renewable energy sources (where the main focus is put on solar power). The project exists out of seven pilots that demonstrate different applications of vehicle-to-grid (V2G) and smart charging technologies. These are vehicle-to-home (V2H), vehicle-to-business (V2B), vehicleto-street/neighbourhood (V2N) and vehicle-to-city (V2C). The universal goal of the pilots is to develop sophisticated energy management solutions that:

- Increase the amount of ultra-low or zero emission kilometres (and avoid 150 tonnes of CO₂- emissions per year);
- Increase the level of energy autonomy (by 25% on average);
- Avoid (extra) investments for grid reinforcements (accounting for 100 million euros).

The pilots are situated in Belgium, Germany, Norway, the Netherlands and United Kingdom. The City of Amsterdam is one of the partners involved in SEEV4-City and hosts one of the project pilots. The other partners involved in SEEV4-City are the Amsterdam ArenA, Amsterdam University of Applied Sciences, Avere, Cenex, e8energy, KU Leuven, Leicester City Council, Northumbria University, Oslo Kommune and Polis (Amsterdam University of Applied Sciences, 2015; SEEV4-City, 2017).

The pilot in Amsterdam focuses on optimizing the interaction between prosumers and EVs. With this pilot the City of Amsterdam aims to develop a strategy in which EVs in a neighbourhood enhance the direct uptake of local renewable energy in order to (1) reduce emissions by road traffic (where CO₂-emissions are ought to be cut with ten to fifteen tonnes every year) (2) contribute to an increase in local energy autonomy (up to 15%) and, (3) allow for load balancing in order to prevent grid congestion or failure and the corresponding need for grid reinforcements. The final aim of the pilot hosted in Amsterdam is to evaluate the application of the V2N concept (Amsterdam University of Applied Sciences, 2015).


Nevertheless, the roll out of such an energy system is very complex. Therefore, the first phase of the pilot exists of the introduction of static charging profiles (Geerts et al., 2016). This is considered first as the charging infrastructure is currently not ready for the introduction of more advanced smart charging solutions (like dynamic charging or vehicle-to-grid). In addition, the costs to implement these are significantly higher compared to static charging. The static charging profiles are introduced at 52 public charging points that are located throughout the city. The profiles adopted at this moment are expected to form a first contribution towards achieving the intended results. Based on intermediate results the content of the second phase of the pilot will be set. Here, the implementation of more advanced smart charging solutions will be considered.

¹ For more information, see http://www.northsearegion.eu/seev4-city/

3. Methods

This chapter provides the set-up of the research methodology. This includes the means of data collection and the methods applied for data analysis. Figure 1 presents an overview of the steps that are conducted in this research. All simulations are run using R, considering a fifteen-minute time step.

Figure 1 Overview of research methodology

3.1 Overview of supply and demand

The first research step exists of collecting and mapping the distribution of the production of solar and wind power and the demand for EV charging. This information is mapped and allows connecting supply and demand on a local level. The data for the distribution of solar power in the city is derived from a recent research conducted by Readaar (2017). Moreover, the production of solar energy is based on general solar insolation patterns found in Amsterdam and actual electricity generation values of several PV systems (3.1.1). The electricity supply by wind power is based on national generation data and local wind speeds (3.1.2). Data for the distribution and demand of electricity for EV charging is collected at the City of Amsterdam and at the Amsterdam University of Applied Sciences (3.1.3).

3.1.1 Solar power supply

To establish the solar power production profile per fifteen-minute time interval in the year 2016 two different methods have been applied. The first method determines the solar power production on the basis of solar insolation. Here, data collected by KNMI (2017) is used to establish the profile of supply. The second method reviews the actual production of eight different solar PV systems located in Amsterdam.

Method I: Solar insolation

The first method considered to determine the production profile of solar power is based on available data of solar insolation. Here, the actual electricity production of a PV system is calculated by considering the efficiencies of solar panels and PV systems, and solar insolation. The solar electricity supply profile is calculated with formula 1 (Twidell & Weir, 2015).

$$Y_s(t) = PR * I(t) * P_{PV}$$
⁽¹⁾

Where:

 Y_s = Specific yield (kWh/kWp) at time (t) PR = Performance Ratio of PV panel I = Solar insolation (kWh/m²) at time (t), average for fifteen-minute time interval P_{PV} = Rated power of a PV system (kWp)

This method is applied for two different KNMI weather stations, namely the Bilt and Schiphol. Schiphol was reviewed as it is the closest weather station to Amsterdam. From Schiphol hourly solar radiation (in J/cm²) is available for the year 2016. The average hourly insolation data from Schiphol is converted to a fifteen-minute time interval.

In addition, the weather station at the Bilt was reviewed as the available solar radiation data is more precise. This is explained as it includes solar radiation (in W/m^2) per five-minute time frame. Subsequently, the insolation data of the Bilt is aggregated and averaged per fifteen minute time interval.

Method II: PV system

The second method applied to establish the solar power supply per fifteen-minute time interval is based upon monitored solar power production of eight different PV systems in Amsterdam (iCarus, 2017). At these systems the average power output (in Watt) per five minutes is collected. Subsequently, the data is aggregated and averaged per fifteen-minute time interval. Possible gaps in the dataset are supplemented with the available data from the KNMI station Schiphol. This is chosen since the actual solar insolation, and therewith the electricity production by PV systems, was found to overlap more accurately with the Schiphol weather station.

Furthermore, the capacity of the solar PV systems are unknown. As a result, it is assumed that the maximum five-minute peak production is equal to the 99th percentile of the system's converter capacity (iCarus, 2017).

3.1.2 Wind power supply

To determine the wind power production profile per fifteen-minute time interval in the year 2016 two different methods have been applied. The first method considers the actual electricity production by wind turbines on a national level, and is translated by considering local electricity supply values. The second method determines the production profile on the basis of local wind speeds. In this case data collected by the KNMI (2017) is used to establish the supply of electricity.

Netherlands

The first method estimates the wind power supply profile by converting national values to numbers that are deemed representative for Amsterdam. In this method the electricity production of onshore wind turbines per fifteen-minute time interval is reviewed and converted to regional production estimates (ENTSO-E, 2017; Windstats, 2017). For this conversion the efficiency of wind turbines, in terms of annual electricity production per unit of power, are considered on a national and regional level. Subsequently, the supply profile is calculated by considering formula 2 and 3.

$$P_r(t) = \frac{E_{wind}(t)}{P_{cap}} * \alpha$$
⁽²⁾

$$\alpha = \frac{\beta_{AMS}}{\beta_{NL}} \tag{3}$$

12

Where: P_r = Reference wind power production (kWh/MW) at time (t)

City of Amsterdam

 E_{wind} = Electricity production by onshore wind (kWh) at time (t) P_{cap} = Wind power capacity in the Netherlands (MW) α = Correction factor for national average to Amsterdam B_{AMS} = Wind power electricity production in Amsterdam (kWh/MW) B_{NL} = Wind power electricity production in the Netherlands (kWh/MW)

KNMI

The second method applied in order to establish the electricity supply profile of wind power in Amsterdam considers the average hourly wind speed at Schiphol (KNMI, 2017). In this method the power generation of a wind turbine is calculated by considering wind turbine characteristics and local conditions, see formula 4 and 5 (Twidell & Weir, 2015). Moreover, the power coefficient of each wind turbine is estimated by matching the annual generation according to formula 4 to the annual generation per wind turbine in Amsterdam as documented by Windstats (2017). In order to create a fifteen-minute wind supply profile the average wind speed of the first quarter of each hour is equal to the average wind speed of that hour and the hour before. Similarly, the average wind speed during the last quarter is equal to the average wind speed of that hour and the hour after.

$$P_t = 0.5 * \rho * C_p * A * v^3 * C_b \tag{4}$$

for cut in speed
$$\leq v \geq$$
 cut out speed & $P_t \leq P_{max}$

Where:

 P_{max} = Power capacity of the wind turbine P_t = Power generation of the wind turbine (kW) ρ = Air density C_p = Power coefficient (%), which is based on the annual electricity production from Windstats (2017) A = Swept area (m^2) v = Wind speed at hub height (m/s), formula 5 C_b = Betz limit (16/27)

 $v = v_0 * \frac{\log\left(\frac{HH}{RF}\right)}{\log\left(\frac{RH}{RF}\right)}$

Where:

V₀ = wind speed at reference height, RH of 10 meter (m/s) HH = Hub height of the wind turbine (m) RF = Roughness factor (0.05 (KNMI, 2017)) RH = Reference height (10 meter)

3.1.3 Energy demand by EVs

To estimate current and future charging demand profiles of EVs a dataset of previous EV charging sessions was analysed. This dataset holds over 83,000 charging sessions that have taken place at the 52 charging points selected in the SEEV4-City pilot for the period January 2014 until July 2017. These only consist of EV charging session by regular users. Moreover, sessions by Car2Go, connexion and taxi drivers are discarded in this research since charging behaviour is unpredictable and growth rates are unknown. When required, the analysis is supplemented with additional information obtained from literature.

(5)

3.2 Potential for static smart charging

3.2.1 Static smart charging in 2016

On the basis of the supply and demand profiles found in the selected areas, the potential for static smart charging to increase the share of solar and wind power in EV charging is examined. This is done by calculating and comparing the potential or maximum uptake of solar and wind power by EVs for both charging schemes (see table 1). Subsequently, by considering the obtained difference and an average emission from electricity production in the Netherlands of 0.57 kg per kWh (City of Amsterdam, 2017a), the impact of the charging schemes on CO₂-emissions is evaluated. Next, the findings are compared to the desired CO₂-emission reduction as set in the SEEV4-City project.

Table 1 Time dependent charging power at charging point (kW)					
Time span		Time span Regular charging		Static smart charging	
00:00	-	07:00	11	22	
08:00	-	09:00	11	11	
09:00	-	17:00	11	22	
17:00	-	20:00	11	8.28	
20:00	-	00:00	11	22	

3.2.2 EV, and solar and wind power growth

Thereafter, the growth of electricity supply by solar and wind power and the increase in electricity demand by EVs is reviewed in order to determine how the charging schemes affect the utilization of solar and wind power in the future. In addition, here the effectiveness of the applied charging strategy to increase the uptake of renewable energy and achieve the objective decrease in CO₂-emissions are examined. The growth of EVs is based on national growth rate predictions achieved from Steinbuch (2017). Moreover, the growth for solar and wind power is according to targets set by the City of Amsterdam.

3.4 Obstacles for EV charging with solar and wind power

Next, the findings are discussed, which provide insight into the major obstacles for EV charging with solar and wind power. Moreover, this section will provide insights into the advantages and disadvantages of the static smart charging profile in comparison to regular charging.

3.5 Key performance indicators

The potential of static smart charging to increase the share of solar and wind power in EV charging is assessed on two key performance indicators (KPI).

KPI I: Renewable charge

The first performance indicator evaluates the amount of electricity for EV charging that originates from solar and wind power. The KPI is expressed in volume (kWh).

KPI II: CO₂-emissions avoided

The second performance indicator considers the CO_2 -emission that could be avoided due to EV charging with renewable power. This KPI is expressed in terms of mass of CO_2 -emissions polluted by EVs (in kg and tonnes). The share of the EV charging demand that cannot be supplied by solar power is assumed to be supplied by the Dutch energy mix found at that time.

4. Data input

4.1 Solar power

4.1.1 Solar Power in Amsterdam

In this research several assumptions are made regarding the characteristics of PV panels, to estimate the solar power supply profile. These assumptions are based on average PV panel values and presented in table 2.

Table 2 PV par	nel characteristics	
Assumption	Value	Source
PR	0.85	Twidell & Weir, 2015
PV panel	270 Wp	Twidell & Weir, 2015
	1.65 m ²	Readaar, 2017
Ррv	6.1 m²/kWp	= 1000Wp*1.65m²/270Wp
n	0.195	Twidell & Weir, 2015
1	Time dependent (kWh/m ²)	KNMI, 2017

4.1.2 Solar Power growth

The City of Amsterdam has described their objectives for the growth of solar power in *Schaalsprong Zon* and *Duurzaam Amsterdam* (City of Amsterdam 2015a; City of Amsterdam 2015b). Research by Readaar (2017) indicated that the cumulative capacity of solar power installed was almost 24 MWp in April 2016. The target as set by the City of Amsterdam was to reach 25 MWp by the end of that year. Considering the recent growth of PV systems in Amsterdam, it is very likely that this target was met in 2016, and is therefore on schedule. In this research the growth rate of the cumulative solar power capacity installed is based on the targets set by the City of Amsterdam, whereas a linear growth rate is assumed (figure 2).

4.2 Wind Power

4.2.1 Wind power in Amsterdam

At this moment there are 39 wind turbines installed in Amsterdam, which characteristics are presented in table 3. To establish the wind power supply profiles in Amsterdam on the basis of KNMI wind speeds, several assumptions are considered which can be found in table 4.

Table 3 Wind turbines in	Table 3 Wind turbines in Amsterdam (ENTSO-E, 2017; Windstats, 2017)			
Туре	Vestas 3MW	Vestas 2MW	Vestas 0.66MW	Bouma 0.16MW
Pt (MW)	3	2	0.66	0.16
Ср	0.62	0.65	0.55	0.2
A (m ²)	6362	4072	1735	314
HH (m)	80	68	65	24
Cut in speed (m/s)	3.5	4	4.5	5
Cut out speed (m/s)	25	25	25	20
Number of turbines installed	17	1	20	1

Assumption	Value	Source
ρ	1.23 kg/m ³	Twidell & Weir, 2015
C _b	16/27	Twidell & Weir, 2015
RF	0.05	Twidell & Weir, 2015
RH	10 m	KNMI, 2017
V ₀	Time dependent (m/s)	KNMI, 2017
$E_{wind}(t)$	Time dependent (kWh/15-min)	ENTSO-E, 2017
P _{cap}	3,034 MW	ENTSO-E, 2017
β_{NL}	6,179 mln kWh in 2016	ENTSO-E, 2017
β_{AMS}	155 mln kWh in 2016	Windstats, 2017
α	0.025	Formula 3

4.2.2 Wind Power growth

Similar to solar power, the ambitions of the City of Amsterdam for the growth of wind power have been set in *Windvisie* (City of Amsterdam, 2012). However, the wind power capacity has not increased in Amsterdam over the past few years due to refusal of permits by the province of North Holland (Raad van State, 2017). As a result, the cumulative installed capacity of wind power is currently 66 MW, which is far below the target of 180 MW set for the year 2015. At this moment there are no planned constructions for wind turbines within the city. Therefore, it is expected that the cumulative installed wind power capacity will remain 66 MW until 2018. From 2019 onwards a linear growth rate is considered based on the targets set for 2025 and 2040.

As the City of Amsterdam characterised the Westelijk Havengebied and Bedrijventerrein Sloterdijk as the districts with the most potential for wind power, these districts are most likely to encounter the growth in wind power capacity installed (City of Amsterdam, 2012).



Figure 2 Expected growth of solar and wind power (City of Amsterdam, 2012; City of Amsterdam, 2015a)

4.2 Electric Vehicles

4.2.1 EV characteristics

As described in the introduction, a distinction is made between PHEVs and FEVs in this research to simulate future EV charging behaviour. FEVs are filtered from the database by considering the battery volume and charging power. Both values are determined on the basis of all historical charging sessions of the vehicle (which are collected on the basis of the RFID number). Here, the battery volume is set equal to the maximum volume charged by the vehicle. In addition, the charging power is considered to be the maximum average charging power of an EV. As the largest battery of a PHEV was 12 kWh until June 2016, and 17.5 kWh after that, EVs are labelled as a FEV when the volume of a session has exceeded this (table 5).

Subsequently, a distinction is made between FEVs with a large and small battery. This distinction is made in order to review varying charging patterns per EV type. FEVs are labelled to have a large battery when the battery exceeds 40 kWh (IDO-Laad, 2017).

Next, the charging power is determined on the basis of the maximum charging power experienced during a session and the battery volume as indicated in the table. Moreover, FEVs in the future are assumed to allow for a charging power of 22 kW.

Table 5 Conditions for EV labelling (EV Database, 2017)						
EV	Battery capacity (kWh)	Max. charging Power (kW)				
FEV (Large battery)	> 40	11 / 22				
FEV (Small battery	< 40	3.7 / 11 / 22				
PHEV	< 17.5 (< 12*)	3.7				
*Until June 2016						

4.2.2 EV growth

Due to a lack of information regarding the amount of EVs in Amsterdam and the associated growth rate, national EV growth numbers and scenarios are reviewed. In this research EV growth is based on predictions by Steinbuch (2017, see figure 3). The scenario is considered as it aligns with targets set by the Dutch government (ECN, 2016) and was found to meet previous growth rates.

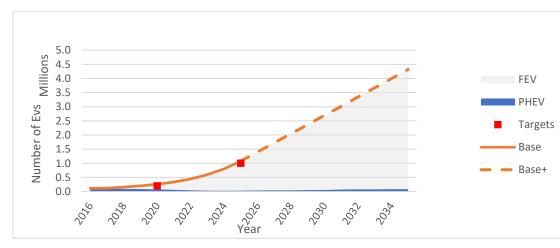


Figure 3 EV growth in the Netherlands

5. Results

This chapter presents the results of this research and is structured according to the sub questions. In section 5.1 the supply of solar and wind power is discussed. Then, the electricity demand by EVs is analysed in section 5.2. In section 5.3 the potential of EV charging with solar and wind power and the corresponding CO₂-emissions for regular and static smart charging is discussed. Finally, in section 5.4 alterations to current charging schemes are reviewed in order to increase the share of solar and wind power in EV charging.

5.1 Energy supply

The first section of the chapter reviews the annual solar and wind power supply in Amsterdam. As a result, this section provides an answer to the sub question "What is the annual solar and wind power generation in Amsterdam for the period 2016-2035, and how is the generation distributed throughout the year?" In order to answer the sub question, first the solar power supply in Amsterdam is examined. This is followed by a discussion of the wind power supply. Finally, as electricity production of solar and wind power overlap occasionally, their combined supply in Amsterdam is reviewed as the renewable power supply.

5.1.1 Solar power supply

Solar power distribution and yield

The average specific yield of a PV system in the Netherlands is set at 875 kWh per kWp (van Sark, 2014). However, the yield of a solar PV system within the Netherlands varies per region. Since the annual solar insolation in Amsterdam is slightly above the national average (KNMI, 2017), the specific yield of PV systems in Amsterdam is expected to be higher. This is confirmed as the average annual production of 84 PV systems in the city of Amsterdam was found to be 925 kWh per kWp (PVOutput, 2017 & iCarus, 2017). Consequently, in this research an average production of 925 kWh per kWp is considered.

The installed capacity of solar PV systems in Amsterdam is 23.9 MWp (Readaar, 2017). Consequently, the total electricity production by solar power is expected to be approximately 22 million kWh per year. The distribution of the annual electricity production per neighbourhood in Amsterdam is shown in figure 4, based on the distribution of PV systems (Readaar, 2017). From the map it can be found that the supply of solar power varies significantly per neighbourhood. Detailed data can be found in Appendix A.1.

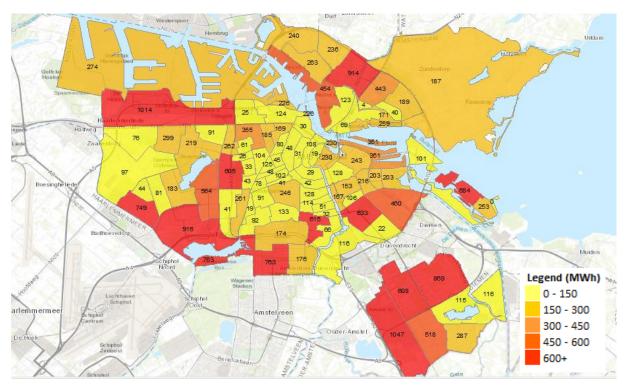
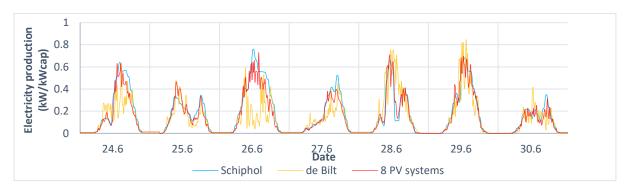


Figure 4 Solar power production per city district for 2016 (in MWh)

Annual solar power supply profile

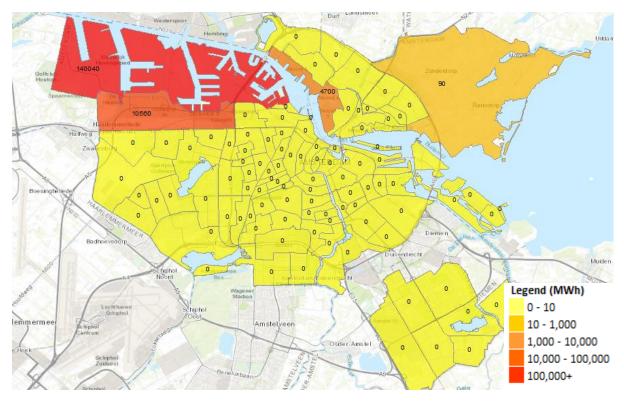

As discussed in the section 3.1.1, three different methods are used to generate the annual supply profile of solar power. The first solar power profile is based on insolation data at *Schiphol* (KNMI, 2017). Here, the annual solar production in 2016 was found to be 936 kWh, which is slightly above the average annual solar PV production of 925 kWh per kWp. At de Bilt an average PV systems was found to have an output of 898 kWh per kWp in 2016, which is below the average annual solar PV production of 925 kWh per supply profile was based on the electricity production of 8 PV systems in 2016, from which five-minute power production data is available. The average annual output of these systems was found to be 898 kWh per kWp.

The three estimated electricity supply profiles for solar power are depicted for one week in 2016 in figure 5. From the figure it can be obtained that the Schiphol profile is relatively constant, when compared to the two other supply profiles. This is explained as the Schiphol profile considers hourly insolation data. However, in this research emphasizes is put on the variations of supply and demand on a fifteen-minute basis. Therefore, the information from the Schiphol weather station does not comply with the needs for this research.

In addition, the data indicates that the profiles for Schiphol and the eight monitored PV systems vary significantly with de Bilt data (also see figure 5). This is a direct result of the geographical location where data was retrieved, as solar power generation varies significantly per region. Since this research considers the supply of solar power for the City of Amsterdam, the available information from de Bilt is considered to be less accurate than the third considered profile.

As a consequence, the electricity power production profiles of the eight PV systems in Amsterdam are employed in the continuation of this research. Moreover, for the solar power supply in the city the average supply of eight PV systems is considered. To match the city's average production, the eight system profile is normalized to match a total annual production of 925 kWh per kWp.

Figure 5 Solar power production

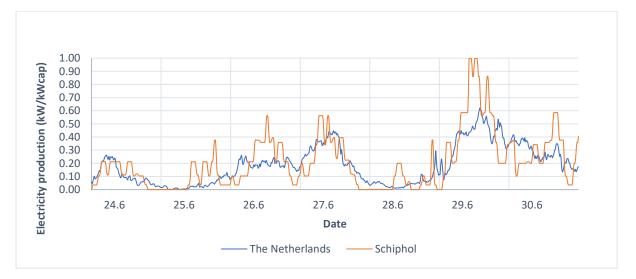


5.1.2 Wind power supply

Wind power distribution and yield

Wind turbines in Amsterdam are commonly found to have about 2,500 full-load hours per year (City of Amsterdam, 2012). At the moment, Amsterdam holds a total of 39 wind turbines with a combined capacity of 66.36 MW (Windstats, 2017). Subsequently, the expected annual supply is approximately 166 million kWh. However, the actual electricity production from wind power was slightly lower in 2016, 155 million kWh (Windstats, 2017). Figure 6 shows the distribution of electricity production from wind power in Amsterdam (City of Amsterdam, 2017b). As can be observed in the figure, wind power is generated in four city districts, where the share is highest for respectively Westelijk Havengebied and Bedrijventerrein Sloterdijk. Clearly, in the city itself no wind turbines are installed.

Figure 6 Wind power production per city district for 2016 (in MWh)



Annual wind power supply profile

To establish the annual profile of electricity supply by wind power in Amsterdam two different methods have been applied. As discussed in section 3.1.2, the first method is based on hourly average wind speed values of KNMI. The second method considers the national average production of all wind turbines. Both methods result in a total annual electricity production of 156 million kWh, which is equal to the reported wind production (Windstats, 2017). This is explained as the power coefficient (C_p) and the correction factor (α) were both normalized to match the actual electricity production in 2016 (see 3.1.2).

Figure 7 holds the electricity supply profiles by wind power according to both methods for a week in 2016. Although the figure shows some overlap between the two profiles of, at several moments in time the difference between both profiles is significant. Moreover, from the figure it can be obtained that the supply profile for the Netherlands varies more gradually compared to the Schiphol profile. This is explained as wind speeds can vary significantly in time when considered locally. However, on a national level these variations are less visible (KNMI, 2017).

Because this research considers the supply of wind power for Amsterdam, the average national onshore wind power production profile is considered to be insufficient. This is supported as the profile does not allow for insights in local variations of supply. Consequently, in the continuance of this research the KNMI supply profile for wind is considered. Nevertheless, a disadvantage that should be taken into account is that the KNMI supply profile is not optimal as it considers hourly average wind speeds, which does not match with the fifteen-minute time step considered in this research.

Figure 7 Wind power production

5.1.3 Renewable power supply

Figure 8 displays two weeks of electricity production by solar and wind power. From the figure it can be obtained that electricity production of solar and wind power frequently overlaps, and can differ substantially for different seasons (summer, winter). Moreover, on an annual basis it is found that the production of electricity by solar panels and wind turbines in Amsterdam coincides 43.5% of the time in 2016 when there is an EV charging demand. At these times supply often exceeds demand, such that either electricity from solar or wind power is utilized. In order to calculate the maximum renewable

charge potential, a renewable supply profile is established. This profile combines the electricity production from solar and wind power.

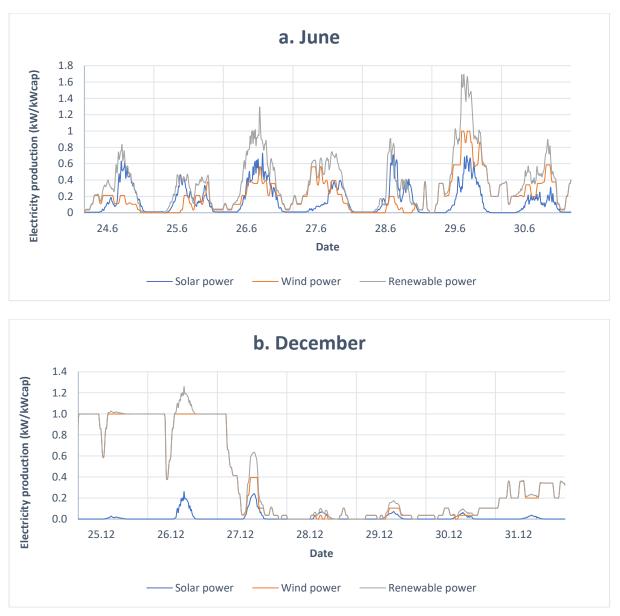
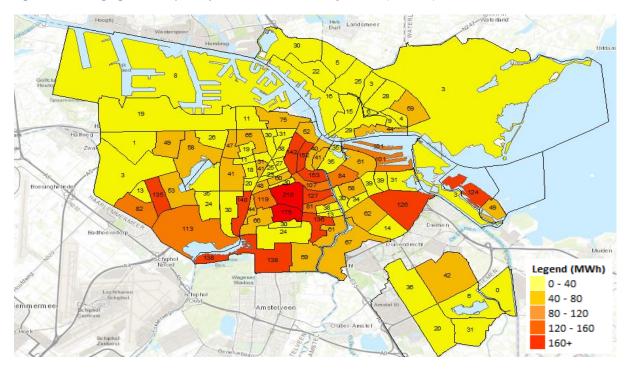


Figure 8 Electricity supply by solar, wind and renewable power

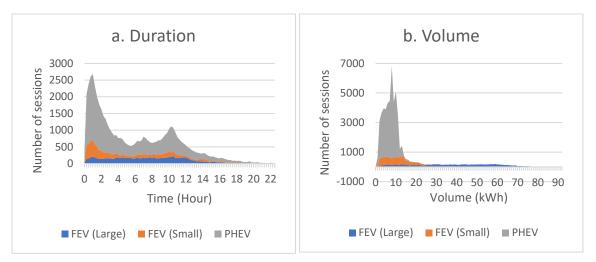

5.2 Energy demand

This section addresses the EV charging demand in Amsterdam. Consequently, it provides an answer to the second sub question "What is the current EV charging demand in Amsterdam and how is this expected to develop until 2035?" Subsequently, the distribution of the EV charging demand in Amsterdam is reviewed first. This is followed by an analysis of the EV charging behaviour including the demand profile per public charging points enclosed in the pilot. Finally, the effect of a growing number of FEVs on the EV charging demand is discussed.

5.2.1 Distribution of EV charging demand

The charging demand of EVs at public charging points in Amsterdam has significantly grown over the past few years, to 5.35 million kWh in 2016. This demand varies significantly per neighbourhood. Figure 9 depicts the total EV charging demand per district for the year 2016.

Figure 9 EV charging demand per city district in Amsterdam for 2016 (in MWh)

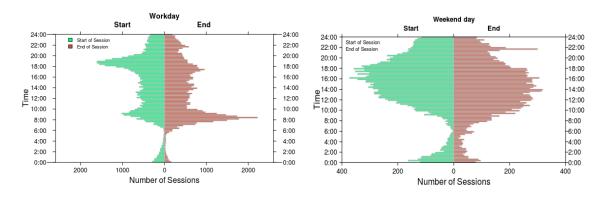


5.2.2 EV charging behaviour

FEV and PHEV charging characteristics

Typical EV charging characteristics, like charging duration and volume, are depicted in figure 10. Both figures are based on all charging sessions that have taken place at the 52 selected charging points in the pilot in 2016. In general, it can be found that most charging sessions are relatively short, take between zero and three hours, and consider a charged volume of below twelve kWh. However, the figures also displays that these charging characteristics deviate significantly for different types of EVs. From the figures two trends can be identified. Firstly, as the size of the battery of the EV increases the relative amount of short sessions decreases. Subsequently, the amount of short sessions is significantly greater for PHEVs than for FEVs with a small battery. The same can be said for small battery FEVs compared to FEVs with a large battery pack. The second trend is similar, and indicates a strong decrease in session where a small amount of electricity is charged (<12 kWh) when the EV battery increases (appendix A.2). Moreover, the volume charged per session is more evenly distributed for FEVs with a large battery compared to the alternatives.

Research by IDO-Laad (2017) considering charging points in Amsterdam, The Hague, Rotterdam and Utrecht confirm these trends. Moreover, this research also stated that as the range of EVs increases the frequency of charging is expected to decrease accordingly. Subsequently, FEVs with a large battery are found to charge 2.4 times per week, compared to a frequency of respectively 3.6 and 3.7 for PHEVs and small battery FEVs. This difference is mostly likely to be explained by a decrease in the number of short charging sessions (< 3 hours).


Figure 10 EV charging behaviour on the SEEV4-City charging points in 2016

EV connection time

The EV charging behaviour in terms of connection times are depicted in figure 11. From the figures it can be obtained that on workdays most sessions start between 18:00 and 20:00, followed by a second peak around 08:30. In addition most sessions end in the morning around 08:00. During weekend days most sessions start and end during the day, between 09:00 and 19:00.

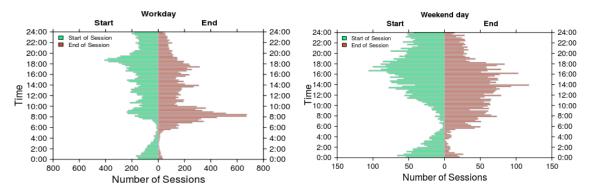
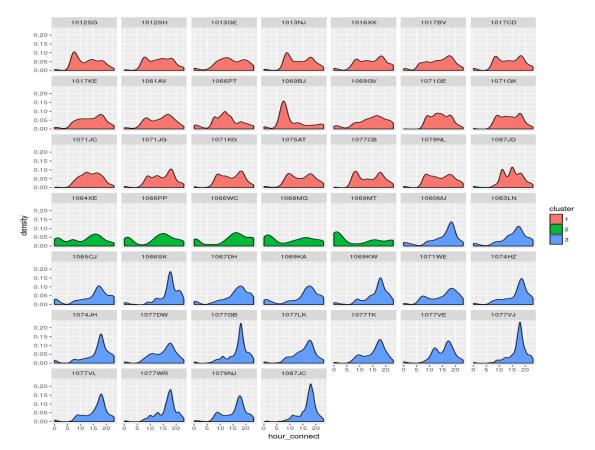
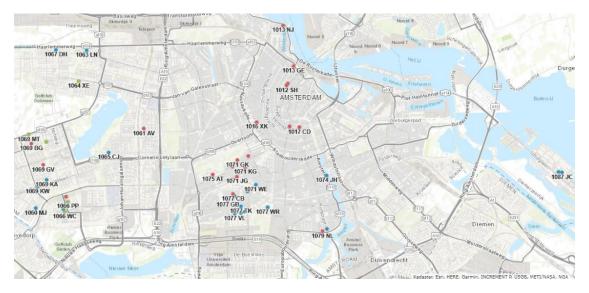

Noticeable from the figure is that there does not exist a distinctive difference for the charging behaviour of PHEV and FEV drivers. This holds for both week- and weekend days. Similarly, analysis shows that there is no apparent difference in charging behaviour for FEVs with small or large batteries.

Figure 11 EV charging start and end times of the SEEV4-Cit charging points in 2016



b. FEV


EV charging profile per charging point

The EV charging behaviour and therewith the EV charging demand profile differs per charging point. Figure 12 shows insight into these deviating charging profiles. Moreover, the figure presents the charging profile as a function of the start of the session. Subsequently, a sub figure peaks when relatively seen most EVs start their charging session. A model analysis has categorised all the charging points into three clusters. The first cluster represents the charging points that experience most EV sessions during the day. These charging points are mainly used by visitors and commuters and are mostly found in the centre and south of Amsterdam (figure 13). The second cluster holds the charging points with a considerable amount of sessions that start in the late evening and during the night. All these charging points are located in Nieuw-West. Finally, the third cluster show similarity as most sessions start between 17:00 and 20:00, which are most likely to be caused by residents. These charging points are found in residential areas in the east, south and west of Amsterdam.

Figure 12 EV charging profile per SEEV4-City charging point in 2016

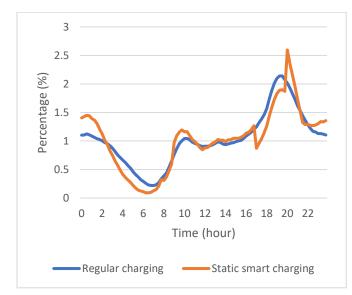

The pilot consists of 52 charging points, however the figure only holds 46 graphs. This is explained as charging points that are located on the same address are reviewed as one. This is supported as EV drivers are assumed to be indifferent on connecting to either one of them.

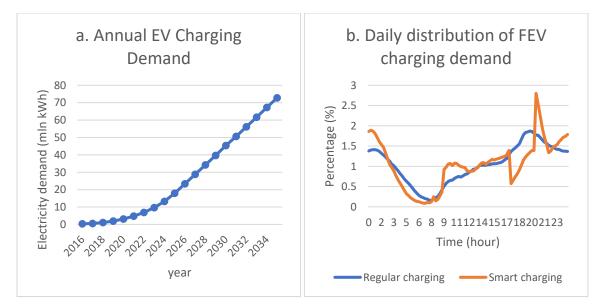
Figure 13 Distribution of the charging point clusters

5.2.3 Regular and static smart charging

Figure 14 displays the average daily distribution of the charging demand density for regular and static smart charging. Moreover, the figure shows the effect of the applied charging profile on the electricity demand for EV charging. The implementation of the static smart charging profile induces a shift in the charging demand. First of all, the electricity charged in the morning increases due to an increase charging power availability. Secondly, a decrease in the EV charging demand occurs between 17:00 and 20:00 due to a decreasing charging power availability at the charging point. This in combination with an increase in the charging power induces a peak in the EV charging demand after 20:00. At last, the electricity charged during the evening and around midnight increases due to an increase in the charging power. This also causes the EV charging demand to decrease in the early-morning (2:00-7:00).

Figure 14 Daily distribution of EV charging demand on the SEEV4-City charging points in 2016 (fifteen-minute time resolution)

5.2.4 Future EV charging


As stated in 4.2.2, the number of FEVs with battery capacities that exceed 40 kWh is expected to increase significantly in the next few years, whereas the amount of PHEVs is expected to decrease. As a result, to predict the EV charging demand of the future, it is assumed that all EVs are large FEVs. Since the size of the battery is found to influence the charging behaviour of the driver in terms of duration per session, volume per session and charging frequency, the charging behaviour of EVs is likely to change following the increase in number of large FEVs. Moreover, this is likely to result into less short sessions in which a small volume is charged. Therefore, to predict future EV charging only the current charging behaviour of FEVs with a large battery are considered (see table 6 and appendix A.2). In addition, this also implies that this research merely considers the session start and end time of these FEVs since this affects the duration of the charging session. As a consequence, the annual demand for electricity is expected to increase as depicted in figure 15a.

On the basis of the current charging behaviour of large FEVs, also an estimation is made of the average daily distribution of electricity demand by EV charging in the future. Figure 15b shows the expected distribution of EV charging demand throughout the day when regular charging is applied, and how this is affected by applying the static smart charging profile. The figure shows an increasing charging demand in the morning as a result of the higher charging power available. In addition, due to the decreasing power between 17:00 and 20:00 the charging demand decreases, followed by a peak in the EV charging demand from 20:00. Finally, the EV charging demand increases around midnight and decreases in the early morning when static smart charging is applied compared to regular charging. This is also explained by an increasing available power output of charging points, resulting in faster charging EVs.

	Charging sessions per week	Mean volume per session (kWh)
FEV large (>40kWh)	2.4	35.7
FEV small (<40kWh)	3.7	10.9

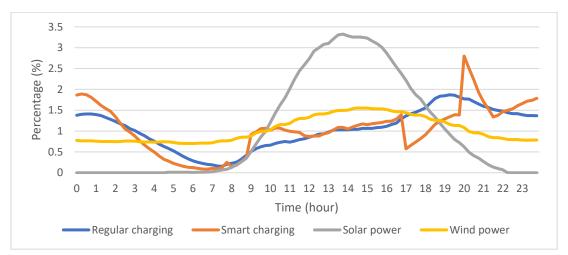
Table 6 Charging behaviour per vehicle

Figure 15 Future EV charging demand at the SEEV4-City charging points

5.3 Matching demand and supply per neighbourhood

This section aims to estimate the amount of solar and wind power that can be used to charge EVs. In order to do so, it combines the electricity supply and EV demand profiles defined in 5.1 and 5.2. As a result an answer is given to the third sub question "What is the current and future maximum share of renewable energy in EV charging when respectively regular and static smart charging are applied, considering a growing capacity of solar and wind power and an increasing number of EVs?" In this section, first the annual supply and demand per neighbourhood is presented. Thereafter, the current and future share of solar and wind power is discussed in respectively 5.3.2 and 5.3.3. At last, the results are interpreted for all charging points located in the city of Amsterdam.

5.3.1 Annual supply and demand


The annual supply of electricity by solar power exceeds the EV charging in all districts except Centrum (see table 7). Moreover, when evaluated on a neighbourhood level it is found that on an annual basis enough solar power is produced for EV charging in all neighbourhoods except Appollobuurt, Grachtengordel-West, Grachtengordel-Zuid, Haarlemmerbuurt, Jordaan, Osdorp-Midden, Schinkelbuurt, Tuindorp Buiksloot, Weteringschand and Willemspark (see appendix A.1).

The wind turbines are located in two districts only which are Noord and Westpoort. The total power supply of these turbines exceeds the total charging demand significantly in 2016. Nevertheless, the production of wind power is limited to the neighbourhoods Bedrijventerrein Sloterdijk, Buiksloterham, Waterland and Westelijk Havengebied (see appendix A.1).

District	Solar power (MWp)	Solar energy (mln kWh)	Wind power (MW)	Wind energy (mln kWh)	EV charging demand (mln kWh)
Centrum	0.98	0.88			0.98
Nieuw West	4.29	3.86			0.75
Noord	3.88	3.49	2.16	5.6	0.31
Oost	3.97	3.57			0.84
West	2.31	2.08			0.69
Westpoort	1.39	1.25	65.52	150.6	0.01
Zuid	3.21	2.89			1.64
Zuidoost	3.85	3.46			0.14
Total	23.88	21.49	67.68	156.2	5.35

Table 7 Electricity demand and supply per city district in Amsterdam for 2016

Figure 16 shows a density plot of the average daily distribution of the supply and demand at the SEEV4-City charging points in 2016. Consequently, the figure gives an impression of at what moments in time the electricity supply and demand peak. In the figure it can be observed that the electricity production from solar power peaks around midday, whereas supply by wind power is more evenly distributed throughout the day. Furthermore, the figure shows the shift in EV charging demand as a result of the applied charging profile. Subsequently, the figure indicates the increase and decrease of electricity demand due to a change in the charging profile applied, at moments of renewable production. From the figure, it becomes clear that the reduced charging power between 17:00 and 20:00 with static smart charging affects the potential uptake of solar power. The same can be said for wind power in the early morning (02:30-07:00).

Figure 16 Density plot of average daily distribution of electricity supply and demand by the SEEV4-City charging points in 2016

5.3.2 Actual sustainable charge in 2016

By comparing the electricity supply of solar and wind power with the demand for EV charging on a fifteen-minute basis throughout the year, the potential share of solar and wind power in EV charging can be calculated. Table 8 shows the potential amount and share of these renewables in the electricity mix with which EVs are charged in the year 2016. Moreover, the table indicates the effect that the considered charging profile, either regular or smart, has on the mix. Here, the amount of renewable energy in charged into the EV is lower than the sum of solar and wind power combined. This is explained by the overlap between solar and wind power. This occurs when at a certain moment in time electricity is supplied by solar and wind power, but the combined electricity supply exceeds the electricity demand by EVs (see section 5.1).

Solar power

From the table it is apparent that the implementation of the static smart charging scheme results into a small decrease in the electricity charged from solar and wind power, thus a decreasing share of renewables in EVs. For solar power this loss is explained by the shift in electricity demand. Moreover, this is caused by a decreasing electricity demand between 17:00 and 20:00, due to the limited available charging power. In addition, the reduction in the amount of solar electricity charged is caused by a decreasing amount of electricity charged in the early morning (4:00-8:00) (see appendix A.3). Furthermore, the consumption of solar power for EV charging is similar during the day. This is explained by the great surplus of solar power during the day and a limited charging demand.

Wind power

The decrease in wind power charged is best explained by the reduction of electricity charged between 17:00-20:00. Moreover, as can be seen in figure 17, on an annual basis wind power production is above average around this time in Amsterdam. On the other hand, appendix A.3 indicates an increasing amount of electricity charged by wind power between 21:00 and 02:00. This is explained by the increasing electricity demand and compensated by a decreasing amount of electricity demand and therefore a decreasing amount of electricity charged by wind power in the early morning (03:00-08:00). During the day, the electricity charged by wind power is more or less similar in both charging schemes.

charging points for 2016							
	Volume (N	1Wh)	Share of source (%)				
Charging scheme	Regular	Smart	Regular	Smart			
Total	331.9	331.9	100	100			
Solar power	110.3	108.6	33.2	32.7			
Wind power	256.3	253.3	77.2	76.3			
Renewable power	270.7	267.1	81.6	80.5			
CO2 emissions saved (kg)	154.3	152.2	-	-			
CO2 emissions (tonne)	34.9	36.9	-	-			

Table 8 Potential solar and wind power contribution to EV charging at the SEEV4-City charging points for 2016

CO₂-emissions

As a result of a decrease in the share of solar and wind power that can be charged into the EVs, also the overall share of renewables in EVs decreases. Moreover, as a direct consequence the CO₂emissions from EV charging increase due to implementation of the static smart charging profile. Subsequently, annual CO₂-emissions from EV charging would increase by over a tonne in 2016 (see table 9). Considering the objective of the municipality to save about 17 tonnes of CO₂-emissions annually by implementing a static smart charging scheme, it can be concluded that at this moment the implementation of static smart charging would be counter effective.

Table 9 Difference in CO ₂ -emissions between regular and static smart charging (kg)						
	2016					
Solar power	548					
Wind power	956					
Renewable power	1,159					

5.3.3 Future potential of sustainable charge

Similar to the previous section, this section establishes the potential share of solar and wind power in EV charging by comparing the electricity supply and demand profiles. The future potential of the renewables charged into EVs is estimated on the demand and supply profiles established for 2016. Moreover, here an increasing installed capacity of solar and wind power, and an increasing amount of EVs in Amsterdam are considered (as explained in chapter 4). In table 10 the potential amount and share of the renewables in EV charging can be reviewed for the period 2020 to 2035. The table quickly shows a strong decrease of the share of both solar and wind power, and therefore renewables, in the electricity mix of EV charging. This is explained by the fact that the number of EVs increases relatively significantly stronger than the capacity of solar and wind power, and electricity demand increases stronger than the supply, such that the surplus of renewables decreases. Nevertheless, this is the result of a great oversupply of renewables at this moment rather than a shortage of renewables in the future. Consequently, it becomes more important to better match renewable supply to the EV charging demand in the future.

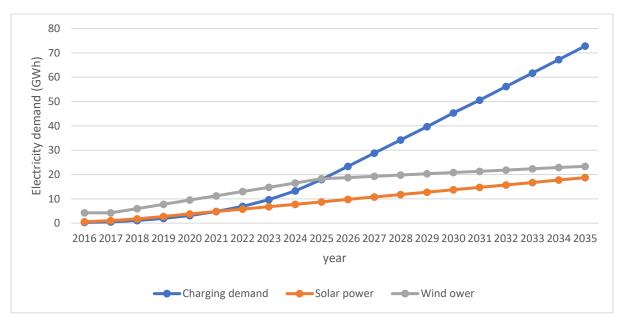


Figure 17 Annual electricity supply and demand at the SEEV4-City charging points

Solar power

In table 10 the effect of the implementation of static smart charging on the share of solar and wind power in EV charging can be observed by comparing with regular charging. Initially it is found that the share of solar power in the electricity mix increases. Nevertheless, from 2025 the share of solar power in the electricity mix increases the electricity mix is greater for regular EV charging than for static smart charging.

The gain of solar power charged when static smart charging is applied is explained due to a higher charging power availability during the day. Due to the increased power, EVs that are charging are able to increase the uptake of solar power. Consequently, in 2020 more solar power is used for static smart charging compared to regular charging between 09:00 and 17:00. However, this positive effect decreases as the relative availability of solar supply per EV decreases, due to a stronger increase in demand than supply. As a result less often there is a surplus of solar power, and an increasing power availability causes a negative effect on the amount of solar power charged. Moreover, this is explained as a higher power availability results into a less well-distributed electricity demand. Consequently, only more solar power is charged between 11:00 and 15:00 in 2025, and between 11:00 and 13:00 for both 2030 and 2035. Although between 11:00 and 13:00 the additional amount of solar power in EVs increases in the period until 2035 when static smart charging is applied, the additional amount of solar energy consumed in regular charging during the rest of the day increases more significantly.

The decrease of solar power charged during the day is explained by a number of reasons. For the period 2020 until 2035 a significant greater amount of solar power is used for charging in the early morning. This is explained as an increased power availability with static smart charging results into a shift of electricity demand in time. Moreover, this induces a shift in the electricity demand from the early morning to the night, such that less electricity is demanded in the morning when solar power is available (see figure 14 and 15b). The same argument holds for the morning and the afternoon. Since in static smart charging more power is available in the morning, less electricity is demanded around midday when the solar power production peaks. The third reason is explained by the limited power availability when static smart charging is applied between 17:00 and 20:00, which causes a lower uptake of solar electricity. The relative effect of this diminishes over time since the surplus of solar power diminishes. Similarly, the surplus of solar power during the day decreases over time. As a

consequence it appears that the uptake of solar power benefits from a more evenly distributed charging demand, which is the case with regular charging. Furthermore, the increased charging demand after 20:00 does not cause an increase in the solar electricity charged, since the supply of solar power is limited after 20:00 (see appendix A.3). At last, an increased charging power availability causes an increased fluctuating demand, which negatively effects the solar power uptake by EVs. This is explained as at these moments the electricity demand exceeds availability of solar supply more often.

Wind power

The implementation of the static smart charging scheme leads to a continuous decrease in the share of electricity of wind power in EV charging. Nevertheless, the introduction of the static smart charging profile does not lead to a decrease into a decreasing share of wind power at all moments during the day. For the period until 2025 an increasing amount of electricity from wind power is charged during the day (09:00-16:00) and during the evening (20:00-02:00). On the other hand less electricity from wind power is charged between 16:00-20:00 and 02:00-08:00. The differences are simply explained by shifts in electricity demand for EV charging, which is a direct result of the power availability of the charging point. However, the extra charged electricity from wind power during the day and night does not outweigh the shortage in the early morning and evening.

After 2025, the additional amount of electricity charged from wind power decreases. This is due to a relative stronger increase in the demand compared to supply. As a result, the surplus of electricity by wind power decreases. Similar to the case of solar power, this is in favour of the regular charging, as this scheme results in a more well-distributed EV charging demand. Similarly as with solar power, this more constant demand optimizes the utilization of wind power.

Year	2020	2020				2025				
	Volume (MWh)		Share (%)			Volume (N	IWh)	/h) Share (%)		
Charging Scheme	Regular	Smart	Regular	Smart		Regular	Smart	Regular	Smar	
Total	3208	3208	100	100		18339	18339	100	100	
Solar power	880	907	27.4	28.3		3458	3339	18.9	18.2	
Wind power	1971	1885	61.4	58.8		7654	7130	41.7	38.9	
Renewable power	2171	2119	67.7	66.0		9115	8757	49.7	47.7	
Potential CO ₂ -emissions saved (tonne)	1238	1208				5196	4991			
Total CO ₂ -emissions (tonne)	591	621				5258	5462			
Year	2030					2035				
	Volume (MWh)	Share (%)		Volume (MWh) Share (%))		
Charging Scheme	Regular	Smart	Regular	Smart		Regular	Smart	Regular	Smar	
Total	46308	46308	100	100		74390	74390	100	100	
Solar power	6812	6280	14.7	13.6		10239	9339	13.8	12.6	
Wind power	12406	11114	26.8	24.0		15402	13494	20.7	18.1	
Renewable power	16651	15521	36.0	33.5		22695	20928	30.5	28.1	
Potential CO2 emissions saved (kg)	9491	8847				12936	11929			
Total CO2 emissions (kg)	16905	17549	1		1 [29466	30474			

Table 10 Potential solar and wind nower contribution in EV charging for the SEEVA-City charging points

CO₂-emissions

Despite the additional electricity charged from solar power in 2020 the share of renewables in the electricity mix is lower for static smart charging than for regular charging during the full simulation period. Consequently, the CO₂-emissions increase significantly over time when static smart charging is applied instead of regular charging. Therefore, overall it can be concluded that on the long term the implementation of static smart charging would be undesirable.

On the other hand, the municipality has set the target to save approximately 17 tonnes of CO₂-emissions per year. This is initially to be achieved by an increasing share of solar power. The simulation results show that static smart charging almost has the potential to achieve this in 2020, as the charging scheme saves up to 15 tonnes of CO₂-emissions on an annual basis. Nevertheless, the negative effect that static smart charging has on the share of wind power in the electricity mix outweighs this.

Table 11 Difference in CO ₂ -emissions between regular and static smart charging (tonne)								
	2020	2025	2030	2035				
Solar power	-15.0	68.1	303.0	512.8				
Wind power 48.8 298.6 736.5 1,088								
Renewable power 29.8 204.3 644.0 1,008								

5.3.4 Static smart charging in Amsterdam

On the basis of the results presented in the previous sections an estimation is made of the effect that static smart charging would have when rolled out at all the city's charging points. Here, it is assumed that the average charging point in Amsterdam behaves like the average charging point included in the pilot. Moreover, among others this considers an average charging point usage equal to 530 kWh per month. For similar reasons as discussed in section 5.3.2 and 5.3.3, will the implementation of the static smart charging scheme result in an increase in CO_2 -emissions (see table 12).

Table 12 Difference in CO ₂ -emissions between regular and static smart charging (tonne							
	2016	2020	2025	2030	2035		
Solar power	21	-586	2,659	11,829	20,019		
Wind power	37	1,905	11,657	28,752	42,466		
Renewable power	45	1,163	7,976	25,141	39,331		

5.4 Optimization for static smart charging

This section discusses the main obstacles that prevent a higher electricity uptake from solar and wind power. It analyses the effects that both charging schemes have on the electricity uptake from renewables. Subsequently, the section aims to provide policy recommendations on how to increase the share of solar, wind and renewables in electricity demanded for EV charging. This answers the fourth sub question "What are the main obstacles to increase the share of renewable energy in EV charging and how can these be overcome?" First, the uptake of electricity from solar power is discussed. Followed by the charge from wind power and renewables (solar and wind power combined). At last, the renewable uptake per type of neighbourhood is discussed.

5.4.1 Solar power charging

Obstacles

The obtained results for solar power show that the extra charging power available during the day, from 9:00 until 17:00, increases the amount of electricity charged from solar power significantly in the period until 2025. This is explained, as with this increased charging power EVs are able to employ the great surplus of solar power which is apparent during most of the days (see appendix A.3). This is especially the case until 2020, when there is a surplus of solar power for over 90% of the time. After 2025 the solar power surplus diminishes due to a relative strong increase in EV charging demand. Moreover, this is when the additional power availability at the charging points affects the potential electricity charged from solar power. This is supported as a lower charging power results into a more well-distributed electricity demand. Consequently, electricity demand will be less fluctuating and therefore less often exceed supply compared to the case where a higher charging power is handled. The potential uptake from solar power during the day would become more positive when the installed capacity increases. In addition, the relative high supply of solar power in 2020 results in a higher uptake of electricity from solar power for static smart charging compared to regular charging. However, this is not apparent after 2020 since the relative installed capacity of solar power per EV decreases.

Another result of the introduction of static smart charging is a higher charging power during the night. Due to a lack of solar power availability, this does not directly influence the uptake of solar power. Nevertheless, the shift in electricity demand caused by this does affect the solar power uptake, due to a decreasing charging demand in the (early-)morning.

Finally, the reduced power between 17:00 and 20:00 affects the electricity demand. Moreover, a lower demand results into a lower electricity uptake from solar power. This effect is more apparent during the period until 2025. After 2025, the charging demand for both charging schemes exceeds the solar power supply more often and, therefore, the influence of a limited charging power on the solar power uptake decreases. The effect will remain comparable if the installed capacity of solar power increases.

Policy recommendations

To increase the uptake of solar power the electricity demand should be shifted to the moment where the surplus of solar power is the greatest. Since there is a great surplus of solar power during the day it is recommended to increase power during the day (07:00-17:00). The positive effect that this has on the amount of solar power charged is visible by the difference in solar power charged between regular and static smart charging scheme, where static smart charging is found to be able to employ this surplus effectively (appendix A.3).

Furthermore, since there is a lack of solar power available during the night (20:00-07:00), it is advised to decrease the power output at night.

Based on the results of this research, it is recommended to not decrease the charging power between 17:00 and 20:00 as is done in the static smart charging profile, or decrease the output less significantly. Until 2025 this greatly affects the uptake of solar power between 17:00 and 19:00. On the long term this holds especially for the first hour only.

A first analysis shows that the EV uptake of electricity from solar power can be increased by at least 5% throughout the simulated period compared to the case of regular charging when the charging power is increased during the day. This profile considers a charging power of 22kW during

the day (07:00-20:00), whereas a charging power of 11kW is maintained during the night (20:00-8:00). This result is mostly limited due to a limited charging demand by EVs during the day compared to solar supply.

5.4.2 Wind power charging

Obstacles

The increase in charging power availability when static smart charging is applied, leads to an increase in electricity from wind power charged during the day and evening. On the other hand, it causes a decrease in wind power charged between 17:00 and 20:00 and in the early morning. Both effects of the introduction of static smart charging are explained by a shift in the electricity demand. Moreover, since more electricity is demanded during the day and evening, the uptake of electricity from wind power increases and vice versa. Nevertheless, the additional electricity charged from wind power does not outweigh the decrease. As a result, the introduction of static smart charging has a negative influence on the share of wind power in the electricity mix employed by EVs.

Recommendations

In order to increase the share of wind power in EV charging, it is recommended to try to shift the electricity demand of EV charging to the time of the day when the surplus of wind power is the highest. Most surplus of wind power is found during the day. Nevertheless, the additional amount of wind power charged into EVs during the day when static smart charging is applied is ample outweighed by the times that less wind power is utilized for EV charging. Consequently, it appears that the share of electricity charged derived from wind power benefits from a more well-distributed electricity demand. On the long term this is strengthened as the relative positive effect of a higher charging power decreases significantly. Which is explained as the charging demand exceeds the supply more often in both charging schemes. Therefore, the regular charging scheme is preferred over static smart charging.

5.4.3 Renewable charging

Recommendations

For the simulated period, during most days a surplus of renewables is found during the morning. Therefore, it is recommended to shift the electricity demand to the morning (7:00-14:00). This surplus is due to the limited electricity demand for EV charging compared to the supply by solar and wind power. In addition, on the short term a surplus of renewables is also often found during the day. Therefore, an increase in the charging power during the day is likely to increase the share of renewables in EV charging.

5.4.4 Renewable charging per neighbourhood

In section 5.2.2, the selected charging points were, according to the charging behaviour, divided into three different clusters. Cluster one is characterised by a high electricity demand during the day (7:00-23:00). Moreover, these charging points have a great potential to utilize solar power. Therefore, it is recommended, especially on the short term, to increase the charging power at these charging points during the day in order to shift the electricity demand. Moreover, it is advised to limit the charging power during the night, such that the electricity demand is better distributed overnight, which optimizes the utilization of wind power.

Cluster two represents the charging points where most sessions take place during the night. Consequently, the share of solar power in EV charging is significantly low. Moreover, based on the current overnight charging behaviour at these charging points, it would be hard to increase the share of solar power, as there is no demand for electricity during the day. At these charging points it is recommended to maintain a limited charging power in order to distribute the electricity demand more evenly over night. This will allow for optimization of the uptake of wind power. Moreover, by postponing the electricity demand to the early morning, one may be able to increase the uptake of solar power as well.

Cluster three exists of the charging points that have a clear demand for EV charging during the evening. Moreover, at these charging points the decreased power availability during the evening results in a limited ability to utilize solar power. Similar as for the previous cluster it is advised to maintain a limited charging power in order to distribute the electricity demand more evenly and optimize the uptake of wind power.

6. Discussion

The results obtained in this research provide insights into the effects of the utilization of regular and static smart charging on the share of solar and wind power in EV charging. Nevertheless, due to the simplifications and assumptions made in the research these results also come with certain limitations. This chapter aims to review the limitations by discussing the data quality (section 6.1) and the research limitations (section 6.2). Thereafter, in section 6.3 the implications of the research are set forth.

6.1 Data quality

6.1.1 Solar power production

A first note to the research results obtained considers the solar power production. Moreover, the production profile of solar power is in this research based on the data of eight PV systems located in Amsterdam. Only eight systems were reviewed as solar power production data per fifteen minute time frame was only available at these systems. The total revenue of these systems was already corrected from 880 kWh per kWp to the average found in Amsterdam of 925 kWh per kWp. However, since only eight systems are evaluated, the impact of a single station on the estimated production is significant. Therefore, the supply profile is sensitive to errors in the data collection of these systems.

6.1.2 Wind power production

Another consideration concerns the wind power production profile. In this research a fifteen-minute time frame is considered. However, due to the limited data availability of wind power production in Amsterdam, the wind power supply profile is based on hourly average windspeeds. Moreover, the hourly averages flatten out the fluctuating nature of wind power production. Consequently, the established wind power supply does not accurately describe the actual wind power production. As a result, the estimation of the uptake of electricity produced by wind power could be under- or overestimated, depending on the timely coincidence of supply and demand.

6.1.3 Charging demand

The time dependent EV charging demand is estimated on the data available in the EV Dataset. Since the EV Dataset is incomplete, as it does not hold information regarding the EV, the charging power during the session nor the duration of the charging session, a number of assumptions were made to establish the charging demand and determine the EV characteristics (section 4.2). As a direct result, EVs may be incorrectly categorized such that PHEVs are tagged as a FEV or vice versa. This would affect the course of extracted power during a charging session, and therewith may influence the charging demand profile established in this research. Nevertheless, the impact of this is expected to be limited since this will consider a relative low amount of sessions compared to the 28,783 sessions considered.

6.2 Research limitations

6.2.1 Solar power

In addition, the annual solar power supply profile for the period 2016-2035 is based on the profile established for the year 2016. However, it is likely that this profile differs somewhat per year, which is likely to affect the uptake of solar power at certain moments during the day. However, on an annual basis the subsequent effect of this on the difference between the uptake of solar power by EVs for regular and static smart charging is expected to be limited.

The growth of the installed capacity of solar power is based on targets set by the City of Amsterdam. Consequently, an accelerated or delayed growth of the installed capacity will affect the annual solar power generation and the share of solar power in EV charging.

Furthermore, a potential increase in the efficiency of a PV system is not considered in the established future production profile. Therefore, the amount of solar power generated and therewith the potential share of solar power in EV charging is likely underestimated. On the other hand, as more PV systems are placed less favourable orientation for these systems will have to be employed. Consequently, less solar power will be produced. These effects may even each other out.

6.2.2 Wind power

The production profile of wind power for the period 2016-2035 is based on the 2016 profile. However, similarly as with solar power, the wind power supply profile will vary per year and influence daily uptake values of electricity from wind power. Nevertheless, as the amount of full load hours is expected to be similar per year, the net annual effect of this is expected to be limited.

Furthermore, the growth of wind power was estimated according to the targets set by Amsterdam. However, it remains questionable whether these targets will be met as the City is behind schedule (City of Amsterdam, 2012). Besides that, in this research a linear growth of wind power is considered, which is unlikely as wind turbines are often installed in the form of wind parks and therefore a sudden increase in the installed capacity may be more likely. Since the date and the form of construction of new wind turbines in the city is unknown, a gradual growth rate is considered.

In this research a constant power coefficient and efficiency of wind turbines in Amsterdam is assumed, which is set equal to current values. However, due to the development of wind turbines and increasing sizes in terms of power, wind turbines have become more efficient over the past years. Moreover, it is likely that newly installed wind turbines have improved efficiencies, such that the power output of wind power per installed power unit increases (Twidell & Weir, 2015). Consequently, the production of electricity of wind power, and also the potential share of wind power in EV charging, is underestimated with regard to the future.

6.2.3 Charging demand

Another limitation of this research considers the estimated future charging demand of EVs. In this research the future electricity demand is based on the current charging behaviour of FEVs with a large battery. This charging behaviour is described using the charging frequency, volume per session, session start time and session end time. Nevertheless, the charging behaviour may change significantly in time as a result of the adoption of EVs in different kind of user groups. This is explained as FEVs are at this moment most profitable for commuters, such that it is likely that most FEVs are driven by commuters. Since commuters have a different charging behaviour than e.g. private car owners, on the long term the average charging behaviour may differ from current behaviour. Research by Cuijpers et al. (2016) indicates that commuters have a relative high annual mileage. Consequently, the EV charging demand may likely be overestimated for the long term.

Furthermore, the growth of EVs is based on national predictions and targets, and applied to the City of Amsterdam. Nevertheless, it is uncertain whether the EV growth rate in Amsterdam will be similar to the national average. Moreover, in the growth of EVs limited consideration is given to (the effect of) car sharing initiatives, which is already apparent in Amsterdam. For these reasons the EV charging demand may be over- or underestimated in this research.

6.2.4 Electricity demand

Another side note to this research considers the possible effects of the absence of electricity demand by others, e.g. residential and commercial users, on the amount renewable electricity charged. In section 3.2 it is stated that this research would provide insights into the differences between both charging schemes by studying the potential or theoretical share of renewables in EV charging rather than the actual share. In addition, the section describes that research into the displacement of renewable electricity consumption is excluded from this research.

Although this provides insights into the differences of regular and static smart charging, this also comes with certain limitations. Moreover, the surplus of renewable power at certain time of the day may be affected by the electricity demand from third parties. The consideration of the actual electricity demand from others may affect the effectiveness of both charging schemes, which would lead to a faulty estimation of the renewable uptake by EVs. For example, a standard electricity demand profile for residential neighbourhoods has a peak in the evening, while electricity demand is limited during the day. When this electricity demand would have been included in the study the surplus of solar power would decrease stronger during the evening than during the day. As a result, the additional solar power consumed in regular charging compared to static smart charging between 17:00 and 20:00 would decrease more than the additional uptake of solar power by static smart charging during the day. This case would favour the case of static smart charging. Therefore, it is highly recommended to research the effect of energy demand by others on the surplus of solar and wind power and how this affects the potential of regular and static smart charging.

6.3 Research implications

6.3.1 Solar and wind power in EV charging

The research points out the differences in the EV charging demand when regular and static smart charging are applied. Moreover, it estimates the potential uptake of solar and wind power for both charging schemes at this moment and in the future. The results indicate that for 2016 regular charging is slightly preferred over static smart charging, as the uptake of renewables in regular charging exceeds the uptake in static smart charging. The effect is among others limited due to the relative large amount of PHEVs and FEVs that are not influenced by the introduced charging profiles as their maximum charging power (3.7 kW) is at all times below the charging powers available.

When the number of FEVs increase, a greater amount of EVs is able to employ the extra charging power available during the day. As a consequence, for the period until 2020 the static smart charging profile is preferred over the regular charging profile, as this has the potential to save an additional of 15 tonnes CO_2 annually in 2020. Nevertheless, this amount is compensated by the deficit amount of wind power charged in EVs when static smart charging is applied. Therefore, from an overall renewable perspective regular charging is preferred.

After 2020, again regular charging is favoured over static smart charging from both a solar and wind power perspective as the results indicate that the uptake of renewable by EVs is higher for regular than for static smart charging. This is explained as the charging demand at a time more often exceeds the supply of electricity by renewables in both charging schemes. This favours a more evenly distributed charging demand, as is the case with regular charging

6.3.2 SEEV4-City objective

The SEEV4-City project runs from 2016 until 2020 and is focused on increasing the uptake of solar power. The results indicate that the uptake of solar power by EVs is higher for static smart charging than for regular charging in this period. As a result with static smart charging an additional of 15 tonnes CO₂ per year can be saved in 2020, which approaches the project's objective to save 17 tonnes of CO₂ per year by static smart charging. Therefore, from the project's perspective the implementation of static smart charging is recommended. Nevertheless, this does not hold for the period 2020 onwards unless essential adaptations are made to the static smart charging profile.

6.3.3 Energy autonomy

Another goal of the SEEV4-City is increasing energy autonomy due to the introduction of smart charging solutions. Here, energy autonomy means to decrease the amount of electricity flows, into and out of the local grid, which go through the transformer substation. In addition, SEEV-City aims to reduce the amount of grid investments needed, by decreasing increasing local electricity flows. In Amsterdam energy autonomy can only be raised by effective utilization of solar power, since solar power is the only form of local energy production that is found in the city.

Since it is found that static smart charging increases the uptake of solar power in 2020, this research indicates that static smart charging could increase the energy autonomy on the short term. However, the uptake of solar power by EV charging would only actually contribute to local energy autonomy when there is a local surplus. Therefore, in order to determine changes in energy autonomy due to static smart charging all electricity flows in a neighbourhood should be mapped. In addition, since electricity production and demand differs significantly per neighbourhood (figure 12 and 13), some neighbourhoods will have a greater potential for increasing energy autonomy by static smart charging than others. Moreover, a selection of neighbourhoods with most potential to increase energy autonomy can be made on the basis of figure 12 and appendix A.1, whereas neighbourhood with high flows of electricity are expected to benefit most from static smart charging measures to raise energy autonomy. Nevertheless, information regarding the electricity grid and the local electricity generation is needed in order to evaluate the potential impact of static smart charging on the energy autonomy of a neighbourhood.

6.3.4 Policy development

This research indicates that the charging behaviour of EVs differs per charging point (see figure 12). However, the similarities encountered between multiple charging points in terms of behaviour allow for categorization of the studied charging points. Subsequently, this research identified three main clusters of charging points, which are characterised by day, evening and night charging. Unfortunately, this study did not identify the effectiveness of static smart charging on the uptake of renewables per charging point nor cluster of charging points. Nevertheless, on the basis of the daily solar power production profile and the daily EV charging behaviour at the studied charging point, it is very likely that the effectiveness of static smart charging profile per cluster may increase the uptake of renewables. To estimate the differences in effectiveness of deviating static smart charging schemes, additional research is needed that focuses on individual charging points.

Another adjustment to static smart charging that deserves additional attention in future research is the introduction of seasonal charging schemes. Moreover, this is explained as the production of solar power is concentrated in the months April until September (iCarus, 2017; KNMI,

2017). Subsequently, it may be more successful to focus on EV charging with solar power in these months and to focus on wind power during the remaining months.

Besides that, it is recommended to research the effectiveness of other measures which could be employed that shift either electricity demand or supply in order to increase the uptake of solar and wind power by EV charging. First of all, a shift in the electricity demand may be achieved by inducing behavioural changes of EV drivers. For example, an increase in the uptake of solar power could be achieved by stimulating EV drivers to charge during the day instead of evening or night. The renewable electricity supply may be shifted by the introduction of local storage. Subsequently, these storages could e.g. be charged with an excess of solar power during the day, which could be used to charge EVs in the evening.

7. Conclusion & Recommendations

The aim of this research was to assess the effect of the implementation of static smart charging on the amount of solar and wind power that could be charged in EVs, and how this effect changes over time. In order to establish this impact, the electricity supply from renewables, solar and wind power, and the electricity demand from EVs haves been estimated for the period 2016 until 2035. Next, the potential uptake of electricity from solar and wind power by EV charging was calculated. Finally, the main obstacles to increase the share of renewables in EV charging are discussed, in order to provide an answer to the research question:

What is the potential of static smart charging to increase the utilization of solar and wind power for EV charging and decrease CO₂-emission by (local) traffic in Amsterdam for the period 2016-2035?

First of all, the increased charging power availability present in static smart charging is found to increase the net uptake of solar power during the day until 2020. However, the reduced power availability between 17:00 and 20:00 and a shift of the electricity demand compensates (partly) for the additional solar power uptake. After 2020 this leads to a net negative effect of the static smart charging profile on the uptake of solar power, when compared to regular charging. Consequently, from a perspective of solar power it is advised to implement the static smart charging profile on the static to the static charging profile are needed to increase solar power uptake in order to cause a net positive impact with regard to regular charging.

With regard to wind power it is found that an increased amount of electricity is used for charging EVs at varying moments during the day and evening due to static smart charging. Nevertheless, for every year in the simulated period this positive effect is outweighed by the decrease of electricity uptake from wind power during the rest of the day. Therefore, from a wind power perspective the regular charging profile is preferred over static smart charging.

The overall impact of the implementation of static smart charging on the uptake of renewables by EVs is found to be negative for the entire simulation period. Subsequently, on the grounds of the assumptions made, the introduction of static smart charging will lead to an increase in CO₂ emitted by EVs. However, it needs to be pointed out that this research does not include potential effects of energy demand by others on the surplus of renewables, which may favour the case of static smart charging over regular charging. To map this effect more accurately it is essential to research the influence of electricity demand by third parties on the solar and wind power surplus.

Furthermore, on the basis of the research findings and the objectives set in the SEEV4-City project, it is recommended to implement static smart charging on the short term as it has the potential to save 15 tonnes of CO₂-emissions by 2020. Nevertheless, since the project aims to save 17 tonnes per year additional measures or adjustments to the static charging profile are needed.

Finally, to optimize the uptake of renewables by EVs it is recommended to adjust the static charging profile according to the local charging behaviour, and local electricity supply and demand third parties. Moreover, the development of different static smart charging profiles for different types of neighbourhoods may has the potential to increase the effectiveness static smart charging. To establish this, additional research is required into the electricity supply and demand per neighbourhood.

References

Amsterdam University of Applied Sciences (2015). Smart, clean Energy and Electric Vehicles for the City. Full Application. April 2015.

Amsterdam Unversity of Applied Sciences (2017). Dataset for EV charging sessions in Amsterdam. June, 2017.

City of Amsterdam (2012). De Windvisie. Ruimte voor windmolens in Amsterdam. July, 2012.

City of Amsterdam (2015a). Schaalsprong Zon. Uitvoeringsprogramma 2016 – 2018. February, 2015.

City of Amsterdam (2015b). Duurzaam Amsterdam. Agenda voor duurzame energie, schone lucht, een circulaire economie en een klimaatbestendige stad. March, 2015.

City of Amsterdam (2017a). Baseline document: Operational pilot in Amsterdam. April, 2017.

City of Amsterdam (2017b). Dashboard for data of EV charging in Amsterdam. June, 2017.

Coenen, P., van der Maas, C., Zijlema, P., Arets, E., Baas, K., ... & Oude Voshaar, S. (2016). Greenhouse gas emissions in the Netherlands. National Institute for Public Health (RIVM), 2016.

Cuijpers, M., Staats, M., Bakker, W. & Hoekstra, A. (2016). Eindrapport Toekomstverkenning elektrisch vervoer. Ecofys, December 2016.

ECN (2016). Energietrends 2016. ECN Policy Studies, September 2016 (ECN-O--16-031). Publication by ECN, Energie Nederland and Netbeheer Nederland.

EEA (2014). Air pollution fact sheet 2014 Netherlands. European Environment Agency, 2014.

ENTSO-E (2017). Actual generation per production type. Obtained in May 2017, from https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show.

EV Database (2017). Elektrische Voertuigen Database. Retrieved in June 2017, from https://ev-database.nl/cheatsheet/snelladen-elektrische-auto.

Geerts, F., Vertelman, B., Kelder, M. & Schuring, F. (2016). Consortium Project plan Smart Charging Amsterdam. December 23, 2016. Confidential.

Van der Giessen, A. & van der Linden, C. (2016). Electric mobility is here. Published in March 2016.

Helmus, J., & Van den Hoed, R. (2015). Unraveling User Type Characteristics: Towards a Taxonomy for Charging Infrastructure. In Proc. 28th Int. Electric Vehicle Symp. and Exhibition (EVS 28), Goang, Korea (pp. 3-6).

iCarus (2017). Dataset electricity production of eight PV systems. Obtained from iCarus, May 2017.

IDO-Laad (2017). Consortiummeeting 6. Amsterdam University of Applied Sciences. July, 2017.

Janssens, H. & Wielders, L. (2014). CO₂-uitstootrapportage. Gemeente Amsterdam, September 2014.

KNMI (2017). Klimatologie. Uurgegevens van het weer in Nederland. Obtained in May 2017, from <u>http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi</u>.

Knol, A. (2016). Wat ademen wij in? Milieudefensie, May 2016.

Milieudefensie (2016). Actieplan gezonde lucht in Amsterdam. July 2016.

PVOutput, 2017. Solar power production statistics. Retrieved in July 2017, from https://pvoutput.org/.

Raad van State, 2017. Provincie mocht vergunningen voor windturbines in Amsterdams havengebied weigeren. Retrieved in August 2017, from <u>https://www.raadvanstate.nl/pers/persberichten/tekst-persbericht.html?id=1074</u>.

Readaar (2017). Inventarisatie PV Amsterdam. Research of Readaar BV, commissioned by the City of Amsterdam. May 2017.

SEEV4-City (2017). Smart, clean Energy and Electric Vehicles for the City. Retrieved in May 2017, from http://www.northsearegion.eu/seev4-city/

Steinbuch, M. (2017). Schatting verkopen Elektrisch Vervoer Nederland t/m 2025. Retrieved in July 2017, from <u>https://steinbuch.wordpress.com/2016/01/22/schatting-verkopen-elektrisch-vervoer-nederland-tm-2025/</u>.

Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.

Van Vuuren, D., Stehfest, E., Gernaat, D., Doelman, J., van den Berg, M., et al. (2016). Energy, landuse and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change 42, pp. 237-250.

Van Sark (2014). Opbrengst van zonnestroomsystemen in Nederland. Een analyse ten behoeve van de bepaling van een nieuw kengetal zon-PV voor het Protocol Monitoring Hernieuwbare Energie. Universiteit Utrecht, March 2014.

Windstats (2017). Statistieken over windenergie in Nederland. Obtained in May 2017, from http://windstats.nl/turbines.php?gemeente=Amsterdam.

Appendix

A.1 Energy supply and demand per neighbourhood combination

Neighbourhood combination	Solar Power (kW)	Solar electricity (MWh)	Wind Power (kW)	Wind electricity (MWh)	EV (MWh)
Amstel III/Bullewijk	1,131.8	1,047.0	()	(NA
Apollobuurt	144.0	133.2			174.7
Banne Buiksloot	988.0	913.9			25.1
Bedrijventerrein Sloterdijk	1,096.0	1,013.8	6,600	10,560	19.1
Betondorp	24.0	22.2			14.4
Bijlmer Centrum (D,F,H)	657.0	607.7			36.3
Bijlmer Oost (E,G,K)	939.2	868.8			42.1
Buiksloterham	491.0	454.2	2,000	4,700	16.0
Buikslotermeer	479.0	443.1			30.9
Buitenveldert-Oost	189.7	175.5			59.5
Buitenveldert-West	824.9	763.0			137.8
Burgwallen- Nieuwe Zijde	117.0	108.2			40.4
Burgwallen-Oude Zijde	21.0	19.4			40.5
Centrale Markt	200.0	185.0			29.9
Chassébuurt	NA	NA			40.5
Da Costabuurt	49.0	45.3			27.4
Dapperbuurt	234.0	216.5			39.4
De Eendracht	81.6	75.5			1.3
De Kolenkit	283.0	261.8			47.0
De Krommert	112.0	103.6			30.8
De Omval	125.0	115.6			70.9
De Punt	47.2	43.7			13.0
Diamantbuurt	55.0	50.9			37.8
Driemond	125.9	116.5			0.3
Erasmuspark	66.0	61.1			19.5
Frankendael	684.0	632.7			62.2
Frederik Hendrikbuurt	86.0	79.6			38.0
Gein	310.8	287.5			30.8
Geuzenveld	323.7	299.4			49.1
Grachtengordel-West	34.0	31.5			151.8
Grachtengordel-Zuid	31.0	28.7			153.5
Haarlemmerbuurt	32.0	29.6			51.6
Helmersbuurt	110.0	101.8			59.5
Holendrecht/Reigersbos	560.5	518.5			20.1
Hoofddorppleinbuurt	282.0	260.9			140.4
Hoofdweg e.o.	36.0	33.3			17.9
Houthavens	244.0	225.7			NA
IJburg-West	739.3	683.9			123.8
IJburg-Zuid	273.8	253.3			48.9
IJplein/Vogelbuurt	75.0	69.4			29.1

IJsselbuurt	35.0	32.4	13.2
Indische Buurt Oost	219.0	202.6	30.7
Indische Buurt West	219.0	202.6	39.3
Jordaan	52.0	48.1	142.0
Kadoelen	255.0	235.9	4.9
Kinkerbuurt	135.0	124.9	24.5
Landlust	384.0	355.2	65.0
Lutkemeer/Ookmeer	104.4	96.6	2.5
Middelveldse Akerpolder/Sloten	810.1	749.4	82.2
Middenmeer	497.0	459.7	126.1
Museumkwartier	266.0	246.1	210.5
Nellestein	123.9	114.6	5.9
Nieuwe Pijp	123.0	113.8	81.5
Nieuwendammerdijk/Buiksloterdijk	185.0	171.1	8.5
Nieuwendammerham	280.0	259.0	44.0
Nieuwendam-Noord	204.0	188.7	59.5
Nieuwmarkt/Lastage	249.0	230.3	35.1
Oostelijk Havengebied	379.0	350.6	101.0
Oostelijke Eilanden/Kadijken	263.0	243.3	60.9
Oosterparkbuurt	165.0	152.6	58.4
Oostzanerwerf	259.0	239.6	29.7
Osdorp-Midden	87.9	81.3	135.4
Osdorp-Oost	197.5	182.7	52.7
Oude Pijp	138.0	127.7	127.1
Overtoomse Sluis	84.0	77.7	48.4
Overtoomse veld	654.0	605.0	41.3
Rijnbuurt	71.0	65.7	61.2
Scheldebuurt	665.0	615.1	136.3
Schinkelbuurt	21.0	19.4	44.0
Sloter-/Riekerpolder	990.7	916.4	113.1
Sloterdijk	27.0	25.0	11.3
Slotermeer-Noordoost	98.9	91.5	26.0
Slotermeer-Zuidwest	236.3	218.6	57.8
Slotervaart	610.2	564.4	59.1
Spaarndammer- en	134.0	124.0	75.0
Zeeheldenbuurt			
Staatsliedenbuurt	183.0	169.3	31.3
Stadionbuurt	100.0	92.5	65.7
Station Zuid/WTC e.o.	188.0	173.9	54.0
Transvaalbuurt	115.0	106.4	34.3
Tuindorp Buiksloot	4.0	3.7	5.8
Tuindorp Nieuwendam	43.0	39.8	4.2
Tuindorp Oostzaan	284.0	262.7	21.5
Van Galenbuurt	28.0	25.9	10.9
Van Lennepbuurt	52.0	48.1	22.6

Total	23,861	22,071	66,360	155,390	5,348
Zeeburg/Nieuwe Diep	109.3	101.1			3.1
Willemspark	98.0	90.7			119.1
Weteringschans	45.0	41.6			107.4
Westlandgracht	44.3	40.9			30.3
Westindische buurt	47.0	43.5			20.2
Westelijk Havengebied	296.0	273.8	57,600	140,040	8.3
Weesperzijde	181.0	167.4			29.9
Weesperbuurt/Plantage	138.0	127.7			84.1
Waterland	202.0	186.9	160	90	3.8
Vondelbuurt	44.0	40.7			29.7
Volewijck	133.0	123.0			15.3

A.2 EV charging characteristics

Correlation between EV charging volume and battery capacity.

EV battery (kWh)	Mean charging volume per session (kWh)	Standard deviation (kWh)
50+	37.2	20.5
40-50	25.5	14.3
30-40	18.3	11.1
20-30	11.1	7.2
<20	8.3	4.5

A.3 Annual hourly electricity supply and demand

The tables present the annual sum of the daily distribution of electricity supply by solar and wind power, and demand by EVs. In addition, it shows the potential uptake of solar and wind power by EVs and the frequency of renewable surplus, which implies production exceeds consumption.

a. 2016

	Product	ion (kWh)	Demand (kWh)		Charge	per source	e (kWh)				Freque	ency of su	Irplus by sourc	e (%)		
			Regular Charging	Static Smart Charging	Regu	lar Chargi	ng Scheme	Static S	mart Chai	rging Scheme	Regu	lar Charg	ing Scheme	Sta	tic Smart Sche	t Charging me
Time	Solar	Wind			Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable
00:00-01:00	0	125427	14834	19283	0	10046	10046	0	12681	12681	0.0	68.4	68.4	0.0	65.1	65.1
01:00-02:00	0	122900	13865	16888	0	9043	9043	0	10739	10739	0.0	67.4	67.4	0.0	65.1	65.1
02:00-03:00	0	124500	12486	11948	0	7994	7994	0	7330	7330	0.0	66.6	66.6	0.0	65.1	65.1
03:00-04:00	0	121318	9919	7232	0	6377	6531	0	4491	4612	0.0	67.2	67.9	0.0	67.1	68.4
04:00-05:00	242	121076	7307	3957	192	4847	5480	89	2735	3023	1.4	69.5	76.2	4.4	69.3	79.0
05:00-06:00	280	115523	4678	1858	280	3287	4002	139	1389	1629	20.0	72.2	86.3	27.1	72.1	88.1
06:00-07:00	1515	116811	3115	1388	893	2269	2809	502	988	1296	43.6	76.6	93.4	49.2	76.6	94.3
07:00-08:00	6954	125527	4118	3331	2343	3128	3960	1957	2528	3202	63.4	80.4	96.6	67.6	80.3	96.8
08:00-09:00	21240	139981	8044	8198	5955	6518	7977	5934	6628	8129	80.1	81.6	98.8	82.7	81.2	98.8
09:00-10:00	39394	162853	12977	15554	10708	11157	12929	12054	13251	15426	88.0	84.5	99.2	87.8	82.7	98.7
10:00-11:00	56495	189161	13462	14461	12100	11963	13403	12861	12719	14348	87.8	88.8	98.9	85.5	87.8	98.7
11:00-12:00	67757	213402	12336	12030	11561	11232	12259	11197	10900	11927	89.1	91.6	99.3	88.3	91.5	99.3
12:00-13:00	71600	231372	12471	12686	11767	11288	12364	11768	11450	12557	91.0	91.2	99.0	91.6	90.8	99.1
13:00-14:00	71264	244630	12899	13658	11845	11848	12780	12347	12487	13461	88.6	92.3	98.4	88.4	91.7	98.1
14:00-15:00	66664	254291	12976	13962	11238	11736	12496	11854	12544	13424	82.8	90.8	96.4	81.6	89.5	96.1
15:00-16:00	54744	251335	13920	14648	10640	12141	12787	11015	12764	13444	73.7	88.9	93.8	73.6	88.1	92.9
16:00-17:00	41189	240387	15874	15165	10428	13510	14032	9927	12933	13394	61.2	86.0	89.2	60.9	86.6	89.9
17:00-18:00	29762	226275	19234	14866	10340	16199	16470	8490	12684	12903	42.7	82.8	84.9	44.4	86.3	87.7
18:00-19:00	19292	205943	25956	22233	9723	20226	20497	8852	17615	17831	18.4	75.3	76.5	23.4	77.9	79.2
19:00-20:00	10530	185026	28081	27875	5877	20485	20651	5787	20320	20481	1.5	69.3	69.6	2.0	69.1	69.6
20:00-21:00	3959	157067	23831	27654	1874	16849	17019	1884	18941	19126	0.1	66.5	66.7	0.1	63.8	63.9
21:00-22:00	837	138438	18841	18297	355	12912	12912	338	12286	12286	0.0	67.1	67.1	0.0	67.7	67.7
22:00-23:00	277	130385	15702	17299	226	10960	10960	231	12074	12074	0.0	70.0	70.0	0.0	68.8	68.8
23:00-24:00	245	128179	14953	18355	115	10257	10257	120	12408	12408	0.0	68.8	68.8	0.0	65.8	65.8

b. 2020

	Productio	on (kWh)	Demand (kWh)		Charge p	er source (l	kWh)				Freque	ency of su	rplus by sourc	e (%)		
			Regular Charging	Static Smart Charging	Regu	lar Chargin	g Scheme	Static S	mart Charg	ging Scheme	Regu	lar Charg	ing Scheme	Static S	mart Cha	arging Scheme
Time	Solar	Wind	Charging	Charging	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable
00:00-01:00	0	284328	178699	249183	0	86265	87162	0	107630	108818	0.0	45.7	45.7	0.0	46.9	46.9
01:00-02:00	0	278600	166174	218571	0	80946	82016	0	95763	96969	0.0	45.3	45.3	0.0	50.5	50.5
02:00-03:00	0	282226	148472	158247	0	72214	73168	0	71006	71706	0.0	48.1	48.1	0.0	54.0	54.0
03:00-04:00	0	275014	128847	103060	0	66527	68425	0	53674	55086	0.0	52.7	53.8	0.0	57.7	61.3
04:00-05:00	1674	274464	104262	59014	3199	58191	65004	7868	34204	38410	1.8	59.8	65.5	5.3	60.8	71.0
05:00-06:00	2321	261878	74778	28817	13604	45809	56029	10923	17910	22545	13.2	65.9	81.0	20.9	64.9	81.2
06:00-07:00	12242	264796	48922	15665	23421	32529	41943	9274	10355	13780	38.6	74.4	91.7	41.2	71.8	89.9
07:00-08:00	49791	284554	37017	21151	25247	27496	34149	15015	14585	18918	60.4	77.7	96.8	60.5	77.6	96.6
08:00-09:00	141865	317321	51743	56476	26189	38653	49388	42363	39429	52785	82.5	77.1	98.2	84.7	73.0	96.4
09:00-10:00	260005	369168	85071	146881	41436	64840	81513	108677	100279	136770	89.2	74.9	98.2	86.0	69.2	95.7
10:00-11:00	379028	428806	102092	138129	69634	79373	97728	105468	100401	129807	86.6	75.7	97.8	79.8	72.2	95.8
11:00-12:00	457730	483758	111238	125064	83603	89708	106486	98625	93987	117766	86.8	78.3	97.9	83.2	74.9	96.3
12:00-13:00	496706	524493	116911	132928	91117	95552	111525	102681	103662	124320	86.9	76.8	97.0	86.3	77.3	95.3
13:00-14:00	491591	554548	135699	155823	94582	110033	127537	108128	118692	141541	84.0	76.5	94.1	82.7	74.9	93.2
14:00-15:00	459301	576448	150456	175547	101143	117230	134999	102045	130285	152088	75.5	73.1	89.7	75.8	71.0	89.0
15:00-16:00	372044	569747	162485	181825	97437	121916	136565	85353	129020	146319	65.1	70.3	83.6	64.1	70.6	83.1
16:00-17:00	275154	544929	182699	171042	83505	127896	140946	61142	114603	128187	52.3	64.1	74.0	53.2	63.0	73.4
17:00-18:00	190382	512938	213081	112280	66932	135280	146779	28814	79310	85002	30.4	57.6	62.7	29.9	56.2	62.2
18:00-19:00	116137	466849	254873	167035	39169	146204	151976	11899	105657	109677	10.6	45.5	47.3	12.1	42.8	45.1
19:00-20:00	57545	419433	272110	253440	12569	142801	144331	2492	129181	130789	1.2	39.5	39.9	2.7	48.4	49.2
20:00-21:00	18980	356051	254067	323612	2541	123691	124576	1539	138087	139281	0.2	37.4	37.8	2.1	71.8	73.4
21:00-22:00	3605	313823	228304	214212	1598	107847	108756	1452	97280	98437	0.5	39.2	39.2	4.0	64.5	64.5
22:00-23:00	1695	295568	204835	238692	1552	99571	100474	1533	107660	109001	0.0	42.3	42.3	0.0	60.3	60.3
23:00-24:00	1318	251362	151882	195433	1563	74041	74747	1528	86234	87239	0.0	46.0	46.0	0.0	49.2	49.2

с. 2025

	Production	ı (kWh)	Demand (kWh)		Charge p	er source (l	kWh)				Freque	ency of su	Irplus by source	e (%)		
			Regular Charging	Static Smart Charging	Regu	lar Chargin	g Scheme	Static S	mart Charg	ging Scheme	Regu	lar Charg	ing Scheme	Static S	imart Cha	arging Scheme
Time	Solar	Wind			Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable
00:00-01:00	0	528172	1021561	1424489	0	307974	305455	0	357074	351955	0.0	25.4	25.7	0.0	20.8	21.2
01:00-02:00	0	517532	949959	1249495	0	287977	285968	0	327201	322793	0.0	25.3	25.5	0.0	22.9	23.4
02:00-03:00	0	524267	848760	904641	0	263777	262112	0	258643	255151	0.0	27.8	28.2	0.0	30.5	31.4
03:00-04:00	0	510870	736573	589156	0	257428	259210	0	207624	207175	0.0	30.8	31.3	0.0	38.1	40.1
04:00-05:00	3870	509848	596029	337363	3203	235216	257698	17210	137185	150057	1.2	36.0	39.6	4.8	49.4	56.8
05:00-06:00	5365	486468	427482	164734	6889	196745	248000	34299	75879	99060	4.6	45.6	58.1	18.1	62.2	77.6
06:00-07:00	28298	491889	279671	89550	32135	146383	203025	36262	44127	64974	21.9	58.4	78.4	38.6	70.8	89.5
07:00-08:00	115091	528592	211614	120910	80662	128328	175112	63635	63724	95380	46.6	65.9	90.4	61.7	72.1	93.6
08:00-09:00	327920	589460	295799	322851	103376	181423	257683	176860	174266	262119	70.0	65.7	92.7	78.9	66.4	91.6
09:00-10:00	601000	685772	486322	839666	116061	288455	424246	420917	384049	646028	78.8	61.3	91.6	80.0	51.2	82.5
10:00-11:00	876123	796557	583622	789634	185734	346507	507966	421946	400269	631204	74.5	60.1	91.0	63.4	56.0	84.9
11:00-12:00	1058042	898636	635906	714949	304945	388492	552639	406839	386103	589195	74.9	59.9	90.5	69.4	58.8	87.4
12:00-13:00	1148135	974306	668339	759905	367193	417579	576653	423658	426876	615282	74.6	58.7	87.3	71.4	59.1	85.8
13:00-14:00	1136312	1030136	775741	890785	403496	478108	639591	407687	485824	669353	70.1	56.4	81.8	67.9	57.3	79.0
14:00-15:00	1061674	1070818	860103	1003538	413829	496783	648990	357840	529807	689056	57.7	53.8	74.9	53.7	52.9	72.5
15:00-16:00	859979	1058371	928869	1039431	426309	508282	628703	276943	520117	639912	42.6	48.2	66.4	42.6	49.5	65.5
16:00-17:00	636017	1012268	1044424	977784	385357	511053	607473	170888	449423	537604	28.4	40.8	51.9	29.8	44.5	54.7
17:00-18:00	440067	952842	1218110	641864	299778	513149	567845	79592	332878	363809	11.0	31.9	37.5	16.6	48.8	54.7
18:00-19:00	268451	867226	1457018	954882	197157	486213	502337	25952	394861	407531	2.6	21.7	22.4	9.4	31.1	32.4
19:00-20:00	133015	779145	1555558	1448828	93297	450274	447566	5295	418703	414541	0.3	16.5	16.5	1.0	20.5	20.7
20:00-21:00	43871	661406	1452410	1849973	26752	398963	395084	3278	419909	413718	0.2	17.7	17.7	0.0	17.2	17.3
21:00-22:00	8333	582963	1305131	1224574	5295	364890	361644	3278	335457	331102	0.3	19.9	19.9	0.3	24.9	24.9
22:00-23:00	3917	549052	1170967	1364518	3331	342974	340126	3110	359327	354602	0.1	21.0	21.2	0.0	19.8	19.8
23:00-24:00	2935	437639	848662	1091478	3331	253292	251064	3110	271743	268147	0.2	33.6	34.0	0.0	30.7	30.8

d. 2030

	Production	ո (kWh)	Demand (kWh)		Charge p	er source (l	kWh)				Freque	ency of su	Irplus by source	e (%)		
			Regular Charging	Static Smart Charging	Regu	lar Chargin	g Scheme	Static S	mart Charg	ing Scheme	Regu	lar Charg	ing Scheme	Static S	mart Cha	arging Scheme
Time	Solar	Wind			Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable
00:00-01:00	0	602302	2579554	3596993	0	474967	467743	0	503798	490326	0.0	13.3	13.6	0.0	10.5	11.0
01:00-02:00	0	590168	2398752	3155113	0	448324	441862	0	471981	459730	0.0	14.7	14.9	0.0	12.8	13.6
02:00-03:00	0	597848	2143213	2284318	0	415827	409878	0	394954	384460	0.0	16.2	16.7	0.0	18.6	19.6
03:00-04:00	0	582571	1859928	1487685	0	412767	412947	0	330594	325959	0.0	16.8	17.5	0.0	27.8	29.7
04:00-05:00	6066	581406	1505038	851878	4875	388513	429362	26155	228868	248799	1.2	19.7	22.3	4.8	41.4	47.9
05:00-06:00	8410	554745	1079439	415972	10563	344260	461298	57153	129789	179911	3.7	30.3	42.5	18.1	56.6	71.0
06:00-07:00	44359	560926	706200	226123	49587	273625	418439	69319	74859	128372	16.6	46.0	66.7	37.2	67.6	86.4
07:00-08:00	180413	602781	534349	305312	144797	247974	393072	132229	114691	202624	39.9	54.6	84.6	59.5	67.3	89.5
08:00-09:00	514037	672191	746925	815234	210123	344248	579341	365605	310130	550870	64.0	51.4	85.8	75.1	55.6	84.1
09:00-10:00	942109	782020	1228018	2120249	252906	513000	925668	797863	599482	1264302	69.7	45.2	80.8	71.8	37.5	65.1
10:00-11:00	1373381	908354	1473711	1993913	402760	604129	1100681	837622	628143	1264964	63.7	43.6	78.8	50.3	40.9	70.0
11:00-12:00	1658552	1024760	1605732	1805324	642625	685650	1201539	812052	633232	1189882	62.5	41.6	76.8	56.5	44.0	72.1
12:00-13:00	1799779	1111050	1687630	1918843	772002	736764	1240843	842140	712488	1280950	61.3	40.7	74.0	59.7	41.7	72.8
13:00-14:00	1781246	1174717	1958832	2249331	856730	832479	1333487	758226	805160	1322659	54.9	36.4	65.8	52.9	37.4	62.8
14:00-15:00	1664246	1221108	2171855	2534045	867212	859199	1313647	637563	839112	1297049	39.5	31.4	55.4	41.2	31.4	51.9
15:00-16:00	1348076	1206914	2345496	2624678	838186	864146	1206226	468763	831151	1173353	26.0	27.9	44.8	29.9	29.8	44.5
16:00-17:00	996999	1154341	2637285	2469013	713511	815433	1053092	278366	701715	902292	14.9	20.3	28.1	19.5	27.3	35.5
17:00-18:00	689835	1086574	3075863	1620777	526454	767999	884802	129306	573957	647696	5.5	14.5	16.6	12.3	29.7	35.9
18:00-19:00	420816	988941	3679131	2411181	317529	681290	706380	39568	601911	618554	1.4	8.6	9.0	6.2	15.9	16.8
19:00-20:00	208510	888499	3927957	3658450	143412	612404	605093	8048	582355	569802	0.3	7.1	7.1	0.8	10.0	10.0
20:00-21:00	68771	754235	3667495	4671385	40724	561471	552231	4982	561477	546472	0.2	8.0	8.0	0.0	7.2	7.2
21:00-22:00	13062	664782	3295599	3092184	8060	521533	513367	4982	484153	471973	0.3	9.5	9.5	0.3	13.8	13.8
22:00-23:00	6140	626112	2956820	3445559	5070	501635	493854	4726	507158	494238	0.1	11.8	11.9	0.0	10.5	10.5
23:00-24:00	5954	615518	2806898	3668020	5070	496345	488630	4726	504925	492124	0.3	12.4	12.7	0.0	9.6	9.6

е. 2035

	Production	ո (kWh)	Demand (kWh)		Charge per	r source (kW	/h)				Freque	ency of su	urplus by source	e (%)		
			Regular Charging	Static Smart Charging	Regul	lar Charging	Scheme	Static S	mart Chargi	ng Scheme	Regu	lar Charg	ging Scheme	Sta	tic Smarl Sche	: Charging me
Time	Solar	Wind			Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable	Solar	Wind	Sustainable
00:00-01:00	0	676431	4143841	5778273	0	572083	565057	0	589601	581574	0.0	9.1	9.4	0.0	7.4	7.8
01:00-02:00	0	662804	3853398	5068429	0	550507	544069	0	559810	552655	0.0	10.5	10.8	0.0	9.7	10.1
02:00-03:00	0	671429	3442896	3669569	0	512687	506818	0	476064	469479	0.0	13.3	13.6	0.0	16.5	17.3
03:00-04:00	0	654272	2987822	2389843	0	516538	519030	0	402340	402315	0.0	13.6	14.1	0.0	24.2	26.0
04:00-05:00	8262	652964	2417720	1368472	6817	486126	546734	36774	285906	317961	1.2	15.5	17.4	4.8	39.8	46.0
05:00-06:00	11455	623021	1734029	668225	14771	444976	627257	81678	163972	240642	3.6	25.5	35.8	18.1	55.7	68.5
06:00-07:00	60420	629963	1134452	363248	69401	367943	608733	103303	93668	183095	14.0	41.1	62.3	36.7	67.1	85.1
07:00-08:00	245735	676969	858388	490459	210474	335284	594032	203025	149198	299850	37.1	49.5	79.9	58.9	65.8	87.2
08:00-09:00	700153	754923	1199874	1309606	319481	458697	876363	561920	398020	809887	61.4	45.4	81.2	74.0	50.1	80.7
09:00-10:00	1283217	878269	1972710	3406006	394815	661962	1380559	1182476	724604	1776478	66.5	38.5	74.9	68.9	32.3	57.7
10:00-11:00	1870640	1020152	2367396	3203057	627403	769710	1626880	1264531	767400	1815614	59.0	36.3	72.7	45.3	35.9	63.5
11:00-12:00	2259062	1150885	2579476	2900105	988441	881854	1776756	1233880	787894	1720994	58.1	34.0	70.4	52.1	38.1	67.1
12:00-13:00	2451423	1247795	2711039	3082465	1184083	950294	1833093	1266684	884414	1857582	56.0	32.0	67.7	55.8	35.1	64.2
13:00-14:00	2426181	1319297	3146702	3613366	1315580	1056636	1931118	1124797	986749	1869997	48.7	26.2	56.8	48.6	28.9	54.0
14:00-15:00	2266818	1371398	3488907	4070736	1323667	1077641	1852051	930146	1013398	1772054	33.7	22.7	46.0	37.3	25.3	43.5
15:00-16:00	1836172	1355457	3767847	4216329	1249740	1087699	1660579	673818	1007021	1572763	21.4	18.8	35.1	26.7	22.3	34.2
16:00-17:00	1357982	1296414	4236581	3966267	1042977	992394	1368676	396514	846213	1179976	11.3	12.0	19.0	16.7	20.1	28.1
17:00-18:00	939603	1220306	4941121	2603645	759847	905685	1084844	184354	729888	861416	4.0	7.0	9.1	10.4	22.1	27.1
18:00-19:00	573180	1110657	5910222	3873365	448497	791039	832394	55632	726596	763837	1.3	5.0	5.2	5.7	10.5	11.2
19:00-20:00	284005	997853	6309940	5876999	200880	707482	701859	11315	685023	679524	0.3	4.5	4.5	0.8	5.9	5.9
20:00-21:00	93671	847064	5891530	7504197	56948	655482	646688	7005	641814	632983	0.2	4.9	4.9	0.0	5.1	5.1
21:00-22:00	17791	746601	5294109	4967340	11271	619282	611409	7005	574406	567322	0.3	6.8	6.8	0.3	9.5	9.5
22:00-23:00	8364	703172	4749889	5535008	7090	604563	596863	6645	593695	586262	0.1	7.7	7.8	0.0	7.4	7.4
23:00-24:00	7571	672477	4100070	5331015	7090	573623	566149	6645	565974	558740	0.3	8.9	9.2	0.0	7.8	7.8

A.4 Assumptions

- All renewable electricity is available for EV charging, electricity demand by others is not considered.
- National growth rate for EVs is handled in order to determine future EV charging demand.
- From 2020, all EVs are assumed to be large battery FEVs. Moreover, based on literature these FEVs have a charging frequency of 2.4 per week, charge with 22 kW and charge an average of 32 kWh per session.
- Solar and wind power growth is based on targets set by the City of Amsterdam, where linear growth values are considered.
- Future solar and wind power production is based on the production profile established for 2016.