

Integration of Fuel Cell Range extenders for EV applications Feasibility study

For Aberdeen City Council

January 2017





**European Regional Development Fund** 



EUROPEAN UNION



#### **Report Content**

- Background and project aims
- Summary of activities completed
  - Packaging feasibility
  - Vehicle Integration
  - Power module design
  - Performance modelling output
- Vehicle specification and operational capability
- Project learning to date
- Next steps



# Background & Project aims



Hydrogen

100

- The **Symbio Renault Kangoo** has stimulated interest and demand for fuel cell range extension to electric vans
- Their product uses a novel, **French fuel cell stack** technology (5kW) which "trickle" charges the battery to extend the range.
- They incorporate a 74l (1.6kg usable volume) H2 tank inside the vehicle's load area reducing space capacity
- The product has the backing of Renault such that they have confirmed that the **normal warrantees** for the vehicle apply; with the **fuel cell Rx having 2 years (Or 5000 hrs)** alongside it
- We believe that they have **"sold" over 100** across Europe to date; although they are currently on very long lead times for delivery
- The first response after sale support in UK is provided by Arcola Energy; **Symbio provide the technical support**



# ULEMCo's Aim for Aberdeen City Council & Partners

- Address the limited range impact
  - When laden
  - Seasonal variation
- Address the impact on load space
- Address the reliability
  - Source a commercially available FC with a proven track record of performance and technical support
- Provide local technical support
- Respond to the immediate project requirements for some vehicles by end March 2018



#### **Technical Performance Targets**

- eNV200 NEDC Range 106 miles (as per vehicle specification)
- Average miles/hour by a delivery Van 19.2mph (based on Revolve test fleet)
- Average miles per day by a delivery Van 153.6 miles/day
- Actual eNV200 Range differs ~15% from NEDC 90 miles Range
- Fuel Cell should at least improve the range by ~65 miles to meet /day requirement







## Package Feasibility



#### eNV200 Fuel Cell System Package





- □ Fuel Cell System can be packaged on eNV200 roof (Additional 450mm added to the base vehicle height: @50mph, Air Friction Force = 29.1 N; which is 0.65kW or 0.87 HP)
- Mass of ~140kg added to the Roof (Roof loading is limited by load distribution, by providing additional mounting supports this limitation can be addressed)
- All hydrogen piping's are hermetically sealed (potential to route double walled hoses)
- Modular & Scalable package
- Minimum modification to the base vehicle
- Module can be built offline (~3 days for conversion & Testing)
- Easy Serviceability

\*\* All Dimensions are in mm\*\*

#### Project Rooftop Nissan eNV200 FC Rx<sup>™</sup> Conversion





# Vehicle Integration



#### eNV200 HV Layout







#### Potential Integration Options







#### Selected Integration solution



Introduce a junction box between Power Distribution Module (PDM) & HV Battery

□ Supply power through junction box to HV battery





#### **Refuelling System**



Inside eNV200



ULEMCo

#### **Exhaust Piping**



- □ Exhaust (H2O) is piped to the road
- Protection cover over the piping
- □ Same route will be followed for HV routing







ultra low emission mileage company limited

### Power module design



#### Fuel Cell System Module



- Frame assembly can be mounted on the roof using 6x roof rack mounting points
- Access to additional mounting points, if required
- Additional ingress protection cover on FCell stack
- Additional H tank can be accommodated











# Performance Modelling



#### NEDC Drive Cycle with & without Fuel Cell



□ Fuel Cell operation to suit customer requirement

□ 5% H left as reserve





# Vehicle Specification & Operational capability



NVZO

#### Nissan eNV200 Acenta Rapid

#### **Weight**

GVW – 2220kg Payload – 703kg

#### Drivetrain

80kW Peak Power & 254Nm Peak Torque Single Speed gearbox (1:9.3010)

#### □ Battery

24kWh & 360V L-Ion Battery

#### □ Charging

Type2 - 3.3kW AC on-board Charger Chademo Rapid Charge Port (Allowing 50kW DC)

#### **Estimated Range**

106 miles (NEDC)

#### Overall Dimensions

4650(L)x 2011(W) x 1858(H)



#### Headline Specification of FC Rx e-NV200

|                   | eNV200    | FC Rx e-NV200<br>ST | FC Rx e-NV200<br>ST+ | FC Rx e-NV200<br>TT | Remarks                                            |
|-------------------|-----------|---------------------|----------------------|---------------------|----------------------------------------------------|
| Tank<br>Pressure  | N/A       | 350bar              | 700bar               | 350bar              | 2x 350bar tanks used in FC Rx<br>e-NV200 TT        |
| Range             | 106 miles | 192miles            | 217 miles            | 277 miles           | Can be further increased by adding additional tank |
| Payload           | 703kg     | 563kg               | 542kg                | 523Kg               | Average fleet Payload is 350kg                     |
| Cargo<br>Capacity | 4.3m3     | 4.3m3               | 4.3m3                | 4.3m3               | Fuel Cell Module is roof mounted                   |
| Vehicle<br>Height | 1858mm    | 2308mm              | 2308mm               | 2308mm              | 450mm Over base Vehicle                            |



#### **Fuel Cell Operation**

- User interface will allow to select priority
  - Fuel Cell Mode
  - EV only Mode
  - Static Charging Mode (@ Peak Efficiency)
- Fuel Cell will be ON only when HV battery SOC is 80% or below except on Static charging Mode
- Opportunity to use Fuel Cell as a power source for running Ancillary equipment's (110AC & 230AC) - @Peak Efficiency
- Opportunity for Smart Vehicle System (longer term)
  - Define route plan
  - Define load plan
  - System will decide and operate in the most efficient mode (Refuelling point, Recharging point, cost of H, cost of electricity, etc.)



# Project learning to date



#### Packaging learning

- Roof top is feasible within additional weight, aerodynamic impacts and stability constraints
- The above allows for a power module that could be refitted onto future vehicles
- The integration of the above has minimal impact on the base vehicle which mitigates against residual value
- The integration of the above also allows for off vehicle manufacturing which minimises the time the base vehicle is needed for fitting
- This solution also minuses labour cost for the vehicle integration step
- This adds 500mm on height so will have some application limitations where height restrictions apply



#### Learning from power module design

- The design allows for space for additional tanks and or alternative 700 bar solutions
- There is space for larger fuel cell units if more fuel cell power is desired
- The fuel cell supplier has significant experience and performance data that both helped integration and will provide the customer with a reliable solution



#### Learning from the modelling

- NEDC drive cycle used for range prediction
- Modelling helped to decide size of the fuel cell required and hydrogen storage to meet range and operation requirements
- This further helped to optimise hydrogen and electric usage depending on operator preference and fuel cost
- Modelling used to understand the impact caused to vehicle the vehicle performance by introducing additional mass, installation location etc.



#### Learning on the vehicle integration

- Open source CAN database assisted the process
- Supplied 400VDC to the Nissan eNV200 High Voltage (HV) DC bus by using an external power source and found no error flags
- Vehicle accepts external power as Regen to charge the battery and also uses when there is a demand
- This proves when the vehicle is operational the power demand will be shared between Fuel Cell & HV Battery without any modification to the base vehicle operation strategy



#### Learning on the BOM

- Long lead time items include:
  - Tanks 12 weeks imported from Canada and require upfront payment
  - Fuel Cell 12 weeks from Germany & require upfront payment
  - Pressure regulators limited supplier choices with EC79 approval
- DC/DC converter
- Tank price drops if batches can be procured (200 off)
- FC cost drops by x% if over x can be procured
- DC/DC step change at x volume
- Shortage overall in EC 79 approved suppliers for high pressure components
- Other parts are fairly standard for auto sector



#### Next steps

- Order BOM components
- Complete design of Roof top box and other bespoke parts
- Build Prototype Power module
- Integrate onto vehicle
- Test and Commission
- Gain Type approval or equivalent
- Deliver to customer
- First fill test & driver training
- Gather use data
- Report on results of trial use period

