

Organic Carbon Farming?

Can we sequester more CO₂-C in organic farmed soils?

Dr. Hans Marten Paulsen

Thünen Institute of Organic Farming, Trenthorst 32, 23847 Westerau, Germany Johann Heinrich von Thünen Institute, Federal Research Institute of Rural Areas, Forestry and Fishery hans.paulsen@thuenen.de

Soil C-sequestration for climate

mind

- additionality
- reversibility
- leakage (N₂O, CH₄, CO₂)
- capacity

General duties of agriculture

- Reduce livestock (ruminant) numbers
- Peatland restoration and protection
- Grassland protection
- Forests
- Be sufficiently productive

Potential of organic farming in mitigating climate change

Advantages of organic farming systems:

- CO₂: Low energy input (mineral fertilizer, pesticides), regional feedstuff and concentrates, SOC friendly crop rotations, close area-animal-manure relationship
- CH₄: Low stocking densities
- N₂O: Low N surplus

Overall effect for climate:

- Area related CO2(eq) emissions: Low
- Product related CO2(eq) emissions: Medium, variable

Important for future introduction and acceptance are:

- Food security and consumption habits
- Yield level in developing and industrialised regions
- Sustainability goals
- Policy

CF-Conference, Paulsen 09.12.2021

Summarized current knowledge by the author, read, e.g., Goh KM (2011) Greater Mitigation of Climate Change by Organic than Conventional Agriculture: A Review. Biological Agriculture & Horticulture 27(2):205-229

GHG balances in plant production (Schmid et al., 2019)

		Organic farms (n=32)			Conventional farms (n=33)			
		mean	milk	cash	n	nean	milk	cash
				crop				crop
Emissions cropping	:	556	560	550		1129	1133	1122
seeds		65	40	102		55	41	76
organic fert.	. kg CO ₂	182	253	78		273	410	61
mineral fert.		5	2	10		372	280	513
pesticides		3	0	7		83	45	140
equipment	ی م	33	27	41		32	35	26
diesel	<u>م</u> . '	268	238	313		315	320	306
C-sequestration		-342	-495	-118		324	185	538
N ₂ O emissions	:	865	911	796		1429	1468	1370
GHG emissions	kg CO _{2 eq} ha ⁻¹	1078	976	1228		2882	2785	3031
	kg CO _{2 eq} GE ⁻¹	27	23	33		37	39	34
	kg CO _{2 eq} GJ ⁻¹	12	8	17		17	15	20

CF-Conference, Paulsen 09.12.2021

Network of pilot farms, Germany 2008-2021

www.pilotbetriebe.de

Mean difference in C sequestration rates (Mg C ha⁻¹ y⁻¹)

DNAS VAS

SANC SANC

Dimensions

EEA Report, No 13/2021, Trends and projections in Europe 2021, https://www.eea.europa.eu/publications/trends-and-projections-in-

europe-2021/at_download/file

Eurostat 2021; Land cover statistics <u>https://ec.europa.eu/eurostat/statistics</u>explained/index.php?title=Land cover statistics#Land cover in the EU

Greifswald Mire Centre 2019: https://greifswaldmoor.de/files/dokumente/Infopapiere Briefings/GMC-briefing%20paper CAP final.pdf

What can be done additionally?

Improve biomass turnover and root mass directly on farm by, e.g.:

- undersown crops, cover crops
- avoidance of unnecessary soil cultivation
- increasing multiannual crop rotation elements (also in combination with biogas/livestock)
- increasing phyto-biodiversity and share of legumes in grassland
- establishment of hedges and trees
- protection and rewetting of peatland

and combinations

CF-Conference, Paulsen 09.12.2021

Organic salad fields Photo: Bildarchiv Oekolandbau.de, Stephan 2002, Thünen: Paulsen 2021

Additional organic matter - how to produce?

CF-Conference, Paulsen 09.12.2021

(Fotos: Thünen: Jumshudzade, Paulsen; BLE:Stephan)

Effect of clover grass proportions in crop rotations on SOC content with and without digestate backflow (Levin et al. 2021)

CF-Conference, Paulsen 09.12.2021

Levin et al. (2021) Effects of Organic Energy Crop Rotations and Fertilisation with the Liquid Digestate Phase on Organic Carbon in the Topsoil. Agronomy 2021, 11, 1393. https://doi.org/10.3390/agronomy11071393, Technical University Munich

SOC enrichment and net effect for climate protection Role of Organic Farming

- **Dynamic equilibrium** : SOC development is dependent from biomass-input
- **Site history**: starting point is important for possible development
- Initial effects: probably high effects by conversion to organic management on (degraded) land
- Additional: Biomass-transfer is only effective with additional biomass
- **Reversible** : Unclear development, during climate change, maintaining SOC important
- **Subsoil** : high potential, under used, unknown
- **Roots** : highly important

Evaluate your system:

Rise and keep SOC in organic farmed soils by

more biomass growth and recycling directly on farm,

soil cover, soil rest, diverse deep root systems and careful tillage

