

# SUSTAINABILITY IS A BRIDGE. REGENERATION IS THE DESTINATION.

#### Degenerating

Soil is degrading, biodiversity is decreasing, water is evaporating

Sustainable

The land is in a steady, static state 

#### Regenerating

Soil is restored, biodiversity grows, water and carbon are absorbed



Regenerative agriculture is both process and result, but no metode.

Regenerativity can be measured!

### EOV MEASURES THE HEALTH OF THE LAND AS A LIVING SYSTEM



#### Soil Health

Healthy soils absorb more carbon, retain more water, and are richer in fertility





#### Biodiversity

Plants are more varied and resilient, domestic animals and wildlife are more plantiful





#### **Ecosystem Function**

Water, minerals, nutrients and energy are cycled through a continual process of birth, growth, death and decay and back to birth again

https://savory.global/land-to-market/

# Our strategy: a market driven cultural change

Identify products that come from sustainably managed grasslands

Create a market demand

Sustainable stewardship of land and lifestyle

Install a culture of conservation Adaptive Management that includes biodiversity

Sustainable profit

High quality and volume of wool and meat Biological indicators of land recovery

Increased biodiversity

Increased biodiversity
Soil stability

High carbon sequestration



### Land to Market

Land to Market Is the world's first outcome-based, verified regenerative sourcing solution for meat, dairy, wool, leather, and ecosystem services. It offers a unique value proposition that is authentic, effective, and scalable. L2M packages the empirical data derived from EOV, connects conscientious brand partners directly to EOV supply, and supports them with education, storytelling, and communications strategies.

409 LANDBASES VERIFIED


963,647 HECTARES 2,381,224 ACRES

60+ PARTNER BRANDS

1,000+ products verified







# Key indicators

STM (fast variables)

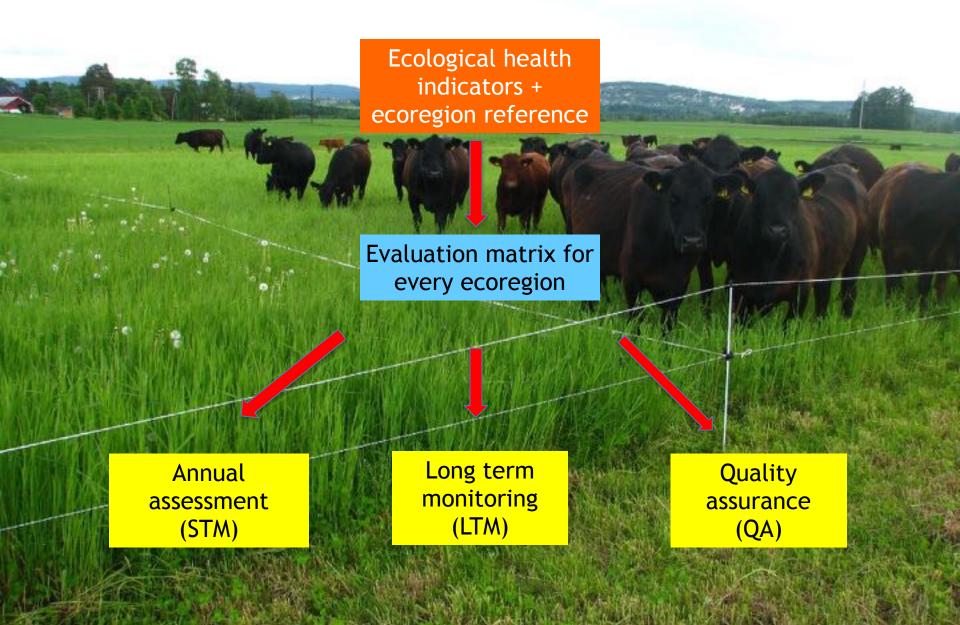
LTM (slow variabler)

|                        | Leading indicators                                      | Lagging indicators                                                                          |
|------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Soil and vegetation    | Ecological health index (EHI)                           | Infiltration Soil development Soil carbon Living organisms Plant biodiversity index Biomass |
| (Livestock production) | Forage availability Production Body condition Fertility | Herd productivity<br>Length of season                                                       |
| (Wildlife population)  | Abundance<br>% juvenile recruitment                     | Population density                                                                          |

# EOV on the farm

Long term monitoring (LTM) Baseline Long term monitoring (LTM)

| Animal production             | Animal production             | n production production  I Planned Planned |                                | Animal production             |
|-------------------------------|-------------------------------|--------------------------------------------|--------------------------------|-------------------------------|
| Planned<br>grazing            | Planned<br>grazing            |                                            |                                | Planned<br>grazing            |
| Annual<br>assessment<br>(STM) | Annual<br>assessment<br>(STM) | Annual<br>assessment<br>(STM)              | Annual<br>assessment<br>(STM)) | Annual<br>assessment<br>(STM) |


Verification

Year 1 Year 2 Year 3 Year 4 Year 5

# EOV on the farm

| Long term<br>monitoring (LTM)<br>Baseline |                               |                               |                                | Long term<br>monitoring<br>(LTM) |
|-------------------------------------------|-------------------------------|-------------------------------|--------------------------------|----------------------------------|
| Animal production                         | Animal production             | Animal production             | Animal production              | Animal production                |
| Planned<br>grazing                        | Planned<br>grazing            | Planned<br>grazing            | Planned<br>grazing             | Planned<br>grazing               |
| Annual<br>assessment<br>(STM)             | Annual<br>assessment<br>(STM) | Annual<br>assessment<br>(STM) | Annual<br>assessment<br>(STM)) | Annual<br>assessment<br>(STM)    |
|                                           |                               | Verification                  |                                |                                  |
| Year 1                                    | Year 2                        | Year 3                        | Year 4                         | Year 5                           |

# Ecological health index (EHI)



|    | 9 70 9 9 9 9                 |                                            |      | Ecosystemprocesses |          |            |                           |
|----|------------------------------|--------------------------------------------|------|--------------------|----------|------------|---------------------------|
|    | Indicator                    | Unit                                       | Туре | Water              | Minerals | Energy     | Communi<br>ty<br>dynamics |
| 1  | Live canopy abundance        | Biomass, % of site potential               | Rel. |                    | 1 20 To  |            |                           |
| 2  | Living organisms             | Evidence                                   | Abs. |                    |          | 74744      | The Malas                 |
| 3  | Warm season grasses (C4)     | Vigour, reproduction & crown integrity     | Rel. |                    |          |            |                           |
| 4  | Cool season grasses (C3)     | Vigour, reproduction & crown integrity     | Rel. |                    |          |            |                           |
| 5  | Forbs & legumes              | Vigour, reproduction & crown integrity     | Rel. | A AL               |          |            |                           |
| 6  | Trees & shrubs               | Vigour, reproduction & crown integrity     | Rel. |                    |          |            |                           |
| 7  | Contextually desirable sp.   | Frequency                                  | Rel. |                    |          |            |                           |
| 8  | Contextually undesirable sp. | Abundance & reproduction                   | Rel. | The second second  |          |            |                           |
| 9  | Litter abundance             | % cover                                    | Rel. |                    |          | - 5        |                           |
| 10 | Litter incorporation         | Litter/soil contact                        | Abs. | Service Control    |          | MC CO      | -                         |
| 11 | Dung decomposition           | Age & structure                            | Abs. | The Park           |          |            |                           |
| 12 | Bare soil                    | % cover                                    | Rel. |                    |          |            |                           |
| 13 | Capping                      | Surface soil resistance                    | Abs. |                    |          | -          | -                         |
| 14 | Wind erosion                 | Active blowouts & pedestaling              | Abs. |                    |          | to and     |                           |
| 15 | Water erosion                | Litter movement, flows,<br>rills & gullies | Abs. |                    |          | A STATE OF |                           |



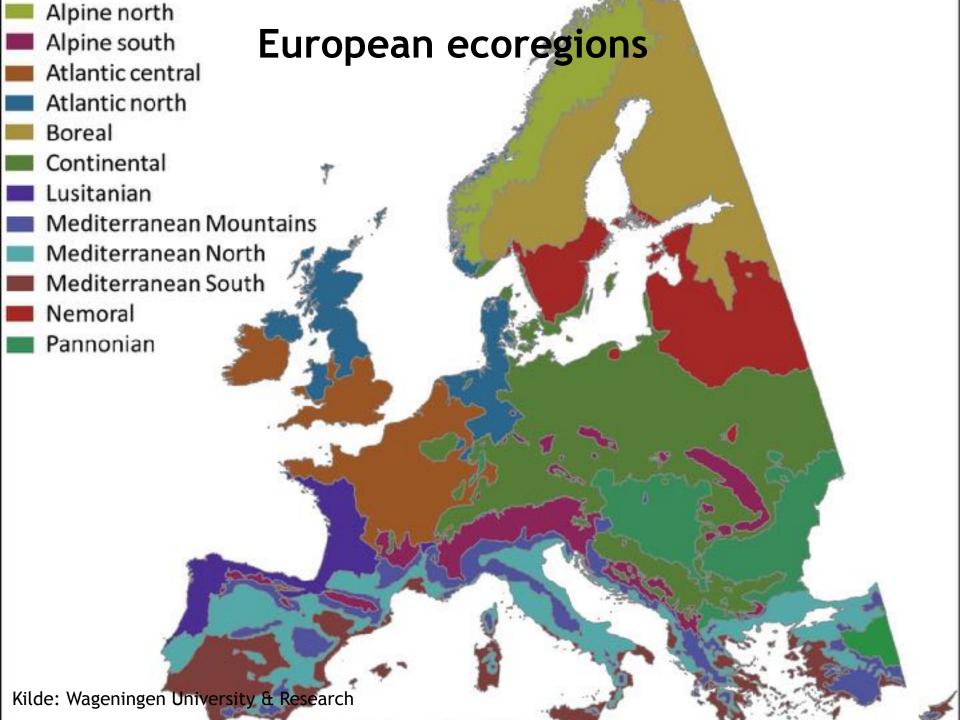
#### **SCIENTIFIC ROBUST:**



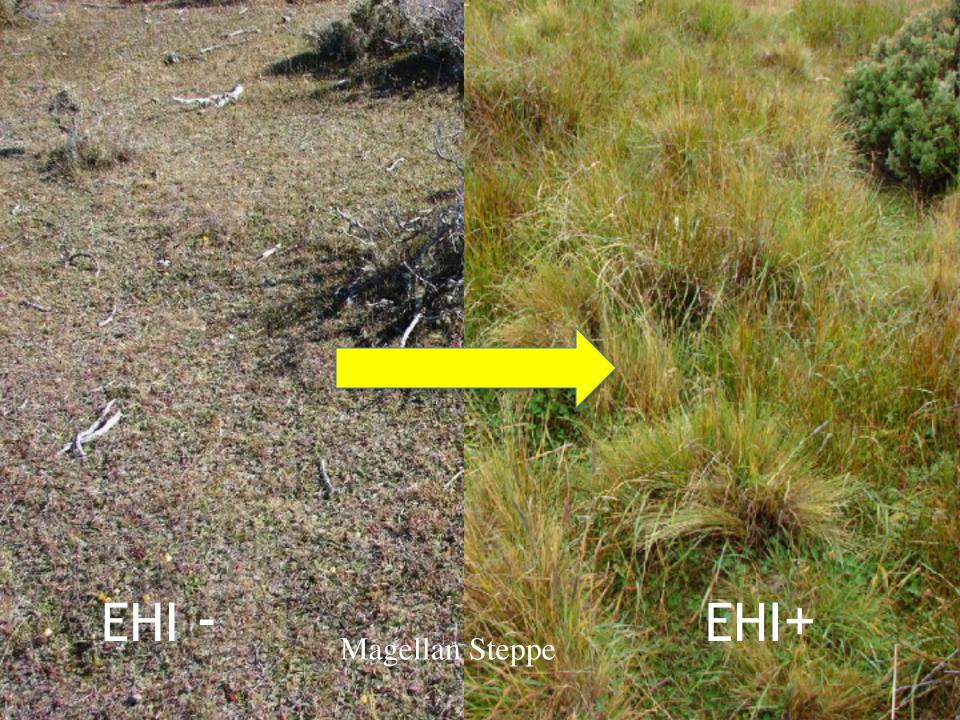


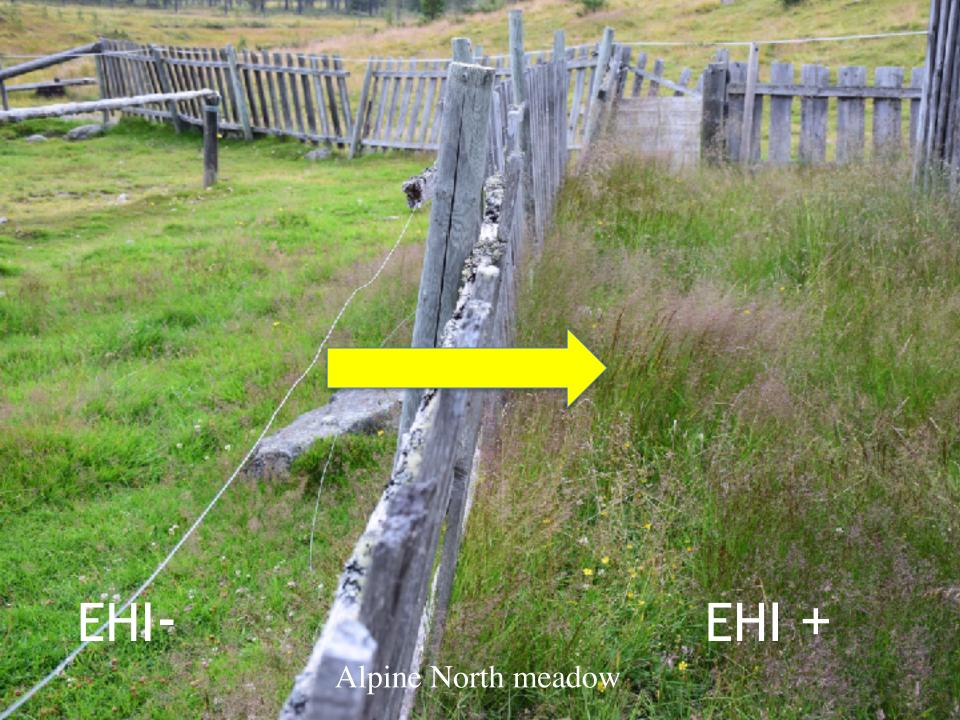
Article

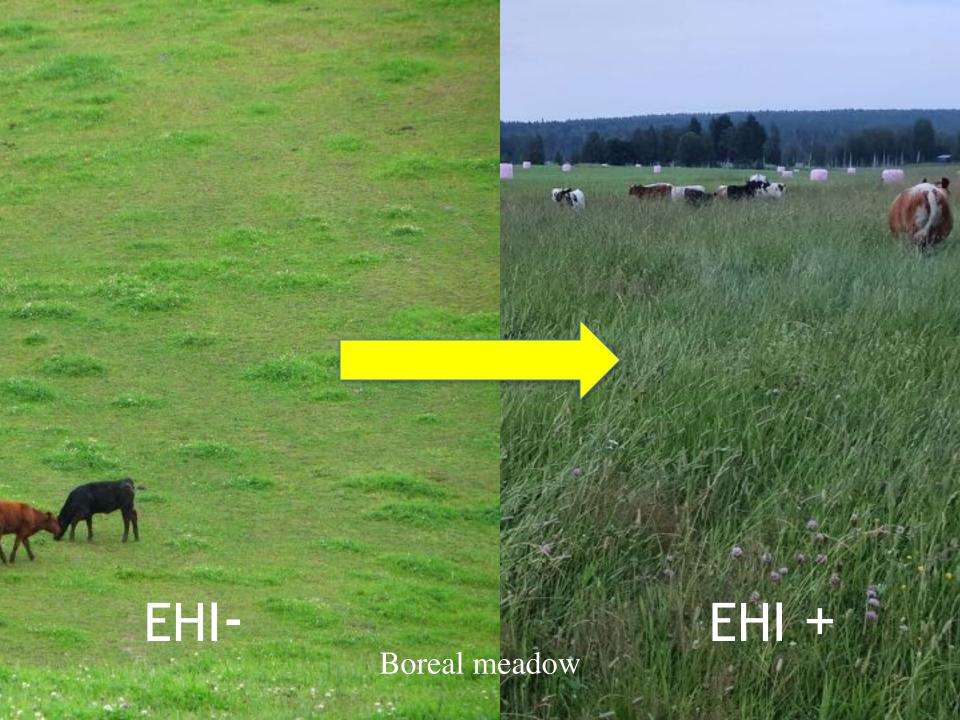
#### Ecological Health Index: A Short Term Monitoring Method for Land Managers to Assess Grazing Lands Ecological Health


Sutie Xu 1, Jason Rowntree 1.8, Pablo Borrelli 2, Jennifer Hodbod 3 and Matt R. Raven 3

- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; scultmau.edu.
- Ovis 21, Belgrano 1585, Trevelin, Chubut 9203, Argentina; phorrelli@ovis21.com.
- Department of Community Sustainability, Michigan State University, East Lansing, MI 48624, USA; thodbod@msu.edu (LHJ); mrayen@msu.edu (M.R.R.)
- Correspondence: rowntre1@msu.edu; Tel.: +1-517-974-9539


Received: 7 May 2019; Accepted: 3 June 2019; Published: 10 June 2019





Abstract: Grazing lands should be monitored to ensure their productivity and the preservation of ecosystem services. The study objective was to investigate the effectiveness of an Ecological Health Index (EHI) for assessing ecosystem ecological health in grazing lands. The EHI was developed by synthesizing existing vegetation and soil cover indicators. We implemented long-term transects at 44 farms from two ecological regions in Patagonia, the Humid Magellan Steppe (HMS) (n = 24) and Subandean Grasslands (SG) (n = 20), to collect data on established quantifiable vegetative and soil measurements and the EHI. Using known quantifiable measures, the HMS had numerically greater species richness compared to SG. Similarly, the average percentage of total live vegetation was more favorable in HMS. Correlating the EHI with these known quantifiable measures demonstrated positive correlations with species richness, the percentage of total live vegetation and carrying capacity and was negatively correlations with hare ground. These results suggest that EHI could be a useful method to detect the ecological health and productivity in grazing lands. Overall, we conclude that EHI is an effective short-term monitoring approach that ranchers could implement annually to monitor grazing lands and determine the impacts of ranch decision-making on important ecosystem indicators.



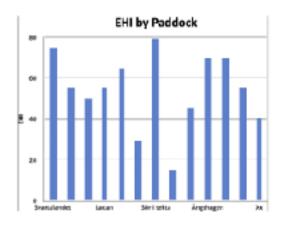


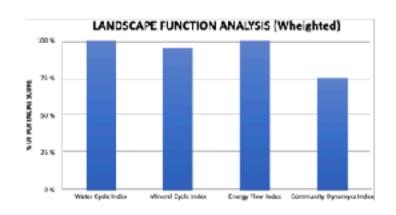






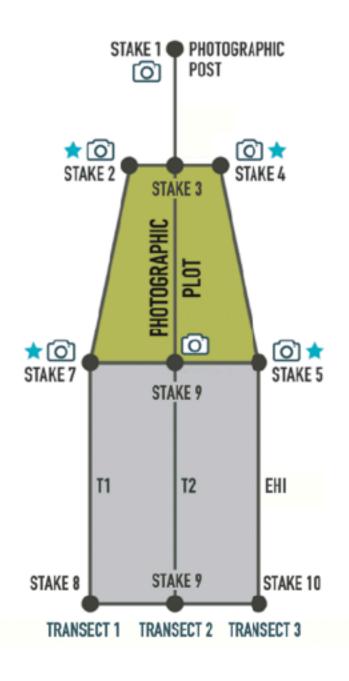
#### **EOV SHORT TERM EVALUATION**


#### TABLE OF RESULTS

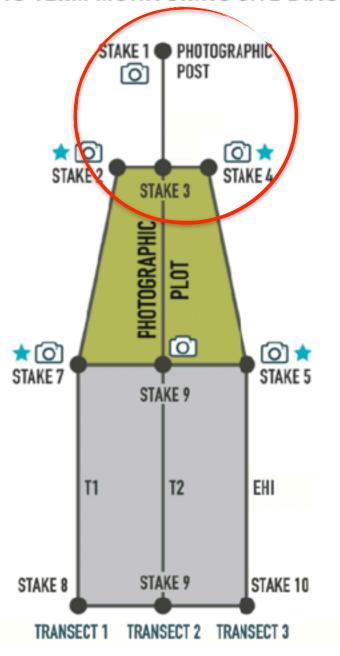

VERIFIED

Results come from leput data seed. Up to 30 pedifocts, if more, yet, may need to create a second file or sod new paddocks in input that 5 heet and create liefs with this table. Habit have or uniformit that are uniformly file and our revisionry (more a pedifocks or and meativalni). Do not preventing green cells.

|     |                |           |              | FORAGE ESTINATION |         |               |         |                   | LANDSCAPE FUNCTION ANALYSIS |                   |                      |  |
|-----|----------------|-----------|--------------|-------------------|---------|---------------|---------|-------------------|-----------------------------|-------------------|----------------------|--|
|     | PADDOCK NAME   | AREA (HA) | VISUAL SC AD | BIOMASS           | QUALITY | Use intensity | Padcock | Water Cycle Index | Mineral Cycle Index         | Energy Flow Index | Cornen, Dyer Frankes |  |
| 1   | Svartelendet   | 39        | 25.00        |                   | 4,00    |               | 76      | 100 %             | 94 %                        | 100.16            | 75 %                 |  |
| 12  | Nytandet       | ü         |              |                   | 5,00    |               | 50      | 10.5              | 53.5                        | 75 %              | 75%                  |  |
| 2   | Ango           | G         |              |                   | 6,00    |               | 50      | 85%               | 67 %                        | 76 %.             | 71 %                 |  |
| -4  | Ladan          | ū         |              |                   | 5,00    | 0             | 56      | 130 %             | A3 %                        | At %              | 75.%                 |  |
|     | Ond I telkini  | a         |              |                   | 4,00    |               | 55      | 100 %             | 55 %                        | 92 %              | 75 %                 |  |
| - 4 | Skoglunda      | e e       |              |                   | 4,00    |               | 30      | 60 %              | 91 %                        | 90 %              | 76 %                 |  |
| 7   | Sör i tekta    | G.        |              |                   | 4,90    | 0             | 80      | 130 %             | 94 %                        | 100 %             | 79%                  |  |
| 6   | Andera Ora     | G.        |              |                   | 5,00    |               | 15      | 60%               | 56 %                        | 50 %              | 63 %                 |  |
| -   | Anders Osshage | C         |              |                   | 4,00    | 8             | 45      | 65%               | 36 %                        | 100 %             | 54 %                 |  |
| 10  | Angshegen      | C         |              |                   | 4,90    |               | 70      | 100 %             | 100 16                      | 80 %              | 75 %                 |  |
| 11  | Kullen         | 0,0       |              |                   | 4,90    |               | 70      | 100 %             | 100 %                       | 00 %              | 71 %                 |  |
| 12  | Sjetandet      | ü         |              |                   | 4,90    |               | 50      | 50%               | 82.%                        | 6/ %              | 6/ %                 |  |
| 18  | Xx             | C         |              |                   | 4,90    |               | 40      | 86%               | 82 %                        | 67 %              | 68 %                 |  |
|     | Total          | 38        |              |                   |         |               |         |                   |                             |                   |                      |  |


| 1 | TOTAL Landbase Records: |           | EIII Landbase       | LANDECAPE FUNCTION ANALYSIS (Wheighted) |                     |                   |                             |  |  |
|---|-------------------------|-----------|---------------------|-----------------------------------------|---------------------|-------------------|-----------------------------|--|--|
|   |                         |           | Weighted<br>Average | Water Cycle Index                       | Mineral Gycle Index | Energy Flow Index | Community<br>Dynamyce Index |  |  |
|   | 39                      | AREA (HK) | 75.0                | 150 %                                   | мs                  | 100 %             | 75%                         |  |  |



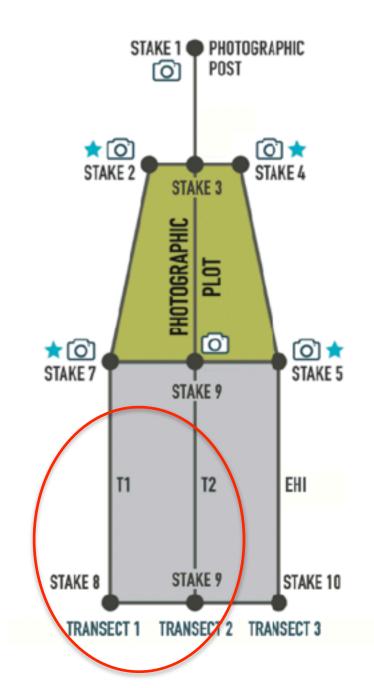





#### LONG TERM MONITORING SITE DIAGRAM



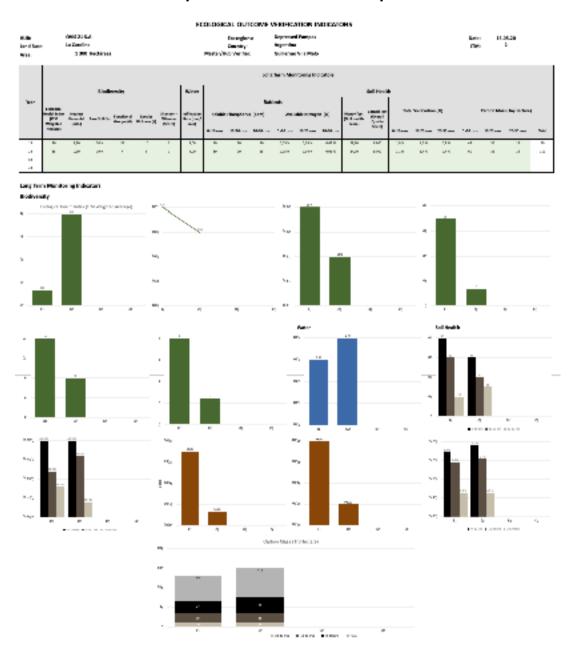
#### LONG TERM MONITORING SITE DIAGRAM

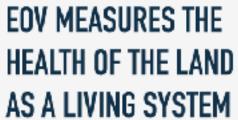










#### LONG TERM MONITORING SITE DIAGRAM








### Comprehensive LTM report













#### Soil Health

Healthy soils absorb more carbon, retain more water, and are richer in fertility



#### Biodiversity

Plants are more varied and resilient, domestic animals and wildlife are more plantiful



#### **Ecosystem Function**

Water, minerals, nutrients and energy are cycled through a continual process of birth, growth, death and decay and back to birth again

