Sustainable urban freight transport with autonomous zero-emission vessels - Project AVATAR

Dr. ir. Yusong Pang Section Transport Engineering and Logistics Delft University of Technology, the Netherlands

Texas Smart City Events, University Texas Austin Oct. 29, 2021

Transport Engineering and Logistics

Delft University of Technology

- Faculty Mechanical, Maritime and Materials Engineering (3mE)
 - Department Maritime and Transport Technology
 - Section Transport Engineering and Logistics

AVATAR Project

AVATAR:

Autonomous Vessels, cost-effective trAnshipmenT, wAste Return

Goals:

- Sustainable urban freight transport with autonomous zeroemission vessels >>> modal shift from road to water
- Last mile innovation through urban/inland waterway transport solutions

Motivation

- Many European cities have large & branched waterway networks that was built for and originally used for cargo transport
- Navigation and use of city waterways generally not economically viable for freight distribution → underutilized
- Road congestion, increasing competition for urban space and need for sustainability in urban commercial transport
- AVATAR project aims to tackle those challenges by developing, testing and assessing adequate technologies and business models for urban autonomous zero-emission inland waterway freight transport

General Info

- Co-financed by the European Union from the Interreg North Sea Region (European Regional Development Fund)
- EU innovation project on urban, autonomous & zero emission water-bound cargo transport solutions for last mile distribution
- Focuses
 - Develop prototypes of automated to autonomous ship units
 - Develop remote monitoring and control concepts
 - Develop use cases and business cases in an urban context
 - Analyze the political and legal framework for the deployment of autonomous ship units in the participating regions (Ghent, Leuven, Delft and Hamburg)
 - Perform pilot tests in the regions

Project Partners

- Delft University of Technology, the Netherlands
- Provincial Development Agency (POM) East-Flanders, Belgium
- University of Leuven (KUL), Belgium
- University of Oldenburg, Germany
- Expertise center for construction materials in logistics, Belgium
- E. Van Wingen NV, Belgium
- Logistics Initiative Hamburg, Germany
- SEAFAR NV, Belgium
- SSPA Sweden AB, Sweden
- Urban Waterway Logistics, Belgium

Supportive partners:

Free and Hanseatic City of Hamburg Ministry of Economics and Innovation Digital Hub Logistics Hamburg Metropoolregio Rotterdam The Hague Maritime Cluster of Northern Germany

ERTICO - ITS Europe The Vlaamse Waterweg NV DEMCON Unmanned Systems Koedood Marine Group Innovation Quarter

Autonomous Vessels – pilot scale

- In a first step, AVATAR is currently converting an existing 1 ton vessel (MAVERICK) and expanding the automation level (0→2/3) of this vessel in Leuven Belgium.
- The MAVERICK catamaran from KUL is currently being equipped with perception sensors (LiDAR, stereo cameras, GNSS, IMU), fully electric drive system, onboard computer and control system.

Autonomous Vessels – full scale

- In a second step, a newly built vessel with a capacity of 20 tons is being developed
- Currently, the aluminum hull is being built in a Dutch shipyard, the fully electric drive system will be integrated in Ghent Belgium
- Technologies and learnings from SEAFAR NV and the Maverick will be scaled up and subsequently implemented onto the new vessel

Autonomous Vessels – model scale

- In parallel, as a third pillar, research on vessel-to-vessel communication & multiple vessel coordination is being carried out with small-scale research vessels developed and equipped at the TU Delft ResearchLab for Autonomous Shipping (RAS).
- University of Oldenburg is researching and developing remote control systems (control center, vessel-to-shore communication & communication layer) for the project

The RAS at TU Delft

- Research, development and realization
- Testing and experiments in unknown and unpredictable environment

https://rasdelft.nl

Experimental facilities

Autonomous shipping laboratory

Towing tank

Flume tank

The Green Village

Tito Neri

TUDelft

Tug boat 1:30 scale model \leftrightarrow kg 1,45 m 16 Kg **Mono Hull Sensors:** Accelerometer Encoder Distance (D)GPS Gyro **Application: Communication: CPU Hardware:** $(((\mathbf{T})))$ A **Autonomous Dynamic Positioning** WiFi Radio **ARM Cortex 32 bit**

12

1:30 scale model Seabax one - Offshore Ship

Delfia 1* Towards multi-agent distributed control

Research

ÍUDelft

- Control for individual and multiple ships
- Adaptive control, coordination & monitoring of multiple ships
- Real-time optimization of transport and logistics
- Human-machine intelligence interaction and middleware of control system
- Experimental validation using high-fidelity simulations with real-life data and small-scale vessels (fleet of ~20 vessels)

Control for individual ships

- Adaptive model predictive manoeuvring control
- Predictive thrust allocation to minimize energy use and improve manoeuvrability

Control for multiple ships

- Cooperative control for city waterway transport
- Vessel-to-Vessel and Vessel-to-Infrastructure Cooperation
- Sailing in formation for fuel efficiency

Control for multiple ships

- Hierarchical architecture of cooperation in waterway networks
- Ship2ship & ship2infra

Experiments and Validation

Methods for integration in environments with both autonomous and human controlled vessels; compliance with 'rules of the waterway'--- when necessary

Distributed control – Platooning

Decentralized Control – using AI

Sailing in Formation

Questions ?

Thank you very much!

Dr. ir. Yusong Pang Y.Pang@TUDelft.NL

Project AVATAR:

https://northsearegion.eu/avatar/

https://www.linkedin.com/company/avatar-interreg-north-sea-region

