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Introduction

P-recovery?
• The main objectives:

• Regeneration of the saturated sorbents
making it reusable in several
adsorption/desorption cylces and

• Recovery of phosphorus by precipitation or
used directly with irrigation water as fertilizer

• The reusability of the granules is as
important (or even more) than recovering
phosphate

• A desorption process using an alkaline
solution is proposed without harming the
adsorbing material.

Relevant research question:
What about the saturated adsorption material: should it simply be disposed
of as solid waste? When is recovery/regeneration recommended?

Iron Coated Sand (ICS)
DiaPure®

Vito A & B
FerroSorb SW 



Introduction

Adsorption

Desorption

Theoretical basis:
• The influence of initial pH on the adsorption capacity qe for Fe and Al

based adsorption materials
• Adsorption/desorption are balancing processes until an equilibrium is

reached!

• pH 8.7 = pHPZC
= final pH is equal to the initial pH

• pH range 2 - 8.7: high qe
• pH range 8.7 – 13: low qe
• pH>11 the qe drops considerably
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Concept of alkaline desorption
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Materials & Methods

1. Batch desorption experiments: 5g of pre-dried saturated ICS was
brought into contact with NaOH solution.

Variable parameters:
• NaOH concentration (1-0.5-0.1- 0.01- 0.001M),
• Desorption time (5min-48h)
• Solid/liquid ratio (S/L= 0.03-1 g/mL)

2. Continuous filter ad- & desorption
experiments: 1 liter of NaOH solution
was recirculated over an adsorption
column filled with 150 cm3 of saturated
adsorption material.

3. Analysis of the samples: Liquids: PO4-P
determination by ion chromatography
after .45 µm filtration. Solid granules:
SEM-EDX.



Results & Discussion
Batch experiments

• The composition of 1 g of saturated ICS granules was determined by a 
complete destruction of the granules by Aqua Regia and ICP analysis: 
• Phosphorus: 15.30 +/-1.25 mg P/g DS =1.5%P
• Iron: 590.7 +/-8.7 mg Fe/g DS =59%Fe

• Optimal NaOH concentration = 
0.5 M

• Optimal contact time = 24 h or 
more

• Optimal S/L ratio = 0.10 - 0.05 
g/mL

• P-desorption efficiency > 50% 
@ 0.5 and 1 M NaOH



Results & Discussion
Continious filter experiments: Adsorption

• The breakthrough curve of ICS column experiments with an Empty Bed 
Contact Time (EBCT) of 5.5 h and 0.5 h results in a breakthrough time of 
180 days and 7 days respectively.

Figure: ICS adsorption column experiments on lab-scale (influent P concentration = 25 mg PO4-P/L) 
with EBCT= 5.5 h (a) and EBCT= 0.5 h (b)

SEM-EDX SEM-EDX

Regeneration is highly 
appropriate in the case 
of a short EBCT

820 EBVb
1592 PVb

334 EBVb
648 PVb



Results & Discussion
Continious filter experiments: Desorption

3085 mg P/kg DS
3335 mg P/kg DS

7345 mg P/kg DS
6356 mg P/kg DS

Maximum desorption capacity @ 1M NaOH

Optimal desorption time

• Continuous desorption 
experiment in recycle

• NaOH concentration = 0.5 M

• Optimal desorption time = 
material dependent

• P-desorption efficiency > 
50% @ 0.5 NaOH

4h



Results & Discussion
SEM-EDX analysis @ EBCT of 0.5 h

• SEM-EDX of saturated DiaPure® of column experiment with EBCT of 0.5 h. 
• The phosphate is mainly adsorbed at the outer layers of granules.
• Calcium forms deposits on the adsorbent surface and disturb the 

alkaline desorption.
• Acid regeneration step before alkaline desorption?

polished DiaPure® granule 
embedded in a resin

Fe – P – Ca analysis by EDX



Results & Discussion
SEM-EDX analysis @ EBCT of 5.5 h
• SEM-EDX of saturated ICS of column experiment with EBCT of 5.5 h.

• Phosphorous is accumulated at the sand core of the granule.
• Phosphorous migrates towards the core of the granule. 

Si – Fe – P  analysis by EDX



Conclusions

• Optimal NaOH concentration = 0.5 M
• Optimal desorption contact time = material dependent
• P-desorption efficiency > 50% @ 0.5 M NaOH
• Leaching of Fe during the desorption process is a problem
• Desorption of P from the inner layers of the granule will be 

difficult
• Calcium deposits should be avoided by an acid wash



Q & A



Part IV: Nutrient removal 
modelling



Nutrient reduction potential using end-of-
pipe solutions for an entire catchment
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• Please give information on:
Size: ca. 3,000 km² (second 
largest German watershed 
that discharges into the Baltic 
Sea)
Land use: Arable land (57%), 
Forest (21%), Pasture (15%)
Soils: Cambisols, Luvisols
Tile-drained areas: 19%

The Warnow river basin



• Slow decrease of NO3
--N 

concentrations during the last 
30 years

• Large differences in NO3
--N 

concentrations among the sub-
basins depending on land use

• Mitigation measures needed for 
sub-basins dominated by 
agriculture

• Strong decrease of TP 
concentrations in the early 
1990s mainly due to improved 
treatment of wastewater

• Target values for TP are 
complied in most sub-
watersheds

• However: HELCOM demands a 
reduction 110 t TP/a for 
Germany

Warnow (yellow), Beke (red), Mildenitz (green)
Target value for good ecological condition: 2.5 mg/L 

Tributaries

Reduction measures 
needed for N + P

(end-of-pipe)
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• Digital Elevation model,
• Weather data
• Land use
• Soil data
• Land management
• Vegetation
• ….

1. Calibration and validation 
of stream flow

2. Calibration and validation 
of P and N loadings

3. Implementation of filters 
and constructed wetlands 
in the model

Modeling the reduction potential
using the SWAT model

Phosphorus
Filters

Nitrogen
Constructed wetlands

End-of-pipe solutions to reduce nutrient loads
in tile-drained areas

Model input Modelling approach

Methods



Reference simulation

black – measured
red – simulated
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Evaluation of P filters in tile-drained areas at different spatial scales

P reduction scenarios



131

5.7 t reduction P/a

• Good fit of measured 
and modeled values 
at different spatial 
scales.

• Effect of P filters at 
catchment scale 
depends on 
proportion of tile-
drained areas.

• P filters could 
contribute to reduce 
P losses notably in 
the Warnow river 
basin.

P reduction scenarios



• Contributing areas were identified by using maps of tile-drained areas, running waters 
(open or as pipes) and aerial photographs.

• Constructed wetlands (CWs) were placed in moist areas according to topographic 
wetness index (TWI).

• 97 suitable spots for CWs were identified. 

N reduction scenarios

Evaluation of constructed wetlands in tile-drained areas
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• Measured NO3
--N loadings were reproduced well by the model.

• The implementation of constructed wetlands had positive effects on the surface water 
quality with an overall NO3

--N removal efficiency of 7.8%.
• The NO3

--N removal efficiency depended on subbasin characteristics (number of CWs, 
ratio between contributing area and subbasin area). 

gray – measured
red – reference
green – CWs

N reduction scenarios



• The scenario results were verified by comparing simulation data with recordings of 13 
existing CWs in Denmark (thanks to the Danish partners for providing the data!).

• The NO3
--N removal rates for the Warnow basin and CWs in Denmark were similar.

• Both for the Warnow basin and the CWs in Denmark, there was a significant positive 
relationship between input concentration and removal rate.

• Due to site-specific characteristics, this relationship was weaker for the Danish CWs.

N reduction scenarios
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Summary

• Through the widespread installation of filters in tile-drained areas, the 
TP loads in surface waters could be reduced by 5.7 t yr-1, which 
corresponds to an overall reduction of ca. 10%.

• The effect of P filters on a catchment scale depends on proportion of 
tile-drained areas.

• NO3
--N loads could be reduced from 900 t yr-1 to 840 t yr-1, which 

corresponds to an overall reduction of ca. 8%.
• NO3

--N removal rates varied strongly among the subbasins ranging 
from 6 to 106 g m-2 yr-1 and they were positively correlated with the 
input concentrations. 

• The installation of filters for P reduction and constructed wetlands for N 
reduction should be prioritized, focusing on hot-spot areas, in which the 
largest benefit is expected.
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Thank you!



Cost-effectiveness of the filters 
and the farmers’ opinion 

Charlotte Boeckaert, Vlakwa



P removal

Drainage water Greenhouse effluent

P filterbox Inline P filter Sediment + 
reactive P filter

Organic matter Sediments

80 – 100% 50 – 80% ongoing

DIY Company

99% 99%

0,1 – 0,5 mg P/l 10 – 20 mg P/l



Cost P filter

Water Filter CAPEX OPEX Yearly cost Total P removal
(kg P)

Cost
effectiveness

(€/kg P)

Drainage 
(0,25 mg P/l) P filterbox € 635 € 19 € 78,2 0,06     1 264

Drainage water (0,46 mg P/l) 0,19 409

Drainagewater (0,12 mg P/l) 0,02 4 938

Greenhouse
(15 mg P/l) DIY € 690 € 95 € 164 1,94   85



Cost effectiveness P-filter

FL – Measures Cost Model

Measure €/kg P

DIY 85

Non-turning soil tillage 174

Green cover 284

Municipal WWTP 363 - 1006

P filterbox 1264

Buffer strips 2160

Individual WWTP 5235 - 5913



N removal

Drainage water Greenhouse effluent

MBBR
Subsoil

MBBR
Containerized

ZVI

60% 75% 90%

DIY

10 – 40 mg N/l 50 – 100 mg N/l

85%



Cost N filter

Application CAPEX OPEX Yearly cost Total N removal
(kg P)

Cost
effectiveness

(€/kg N)

D
IY Greenhouse

effluent € 2 700 € 1 400 € 1 600 12.44         128.76

Su
bs

oi
l

Drainage € 30 000 € 2 900 € 5 550 52.84 105.06

Co
nt

ai
ne

riz
ed

Drainage

Off-grid
€ 50 000 € 2 700 € 7 180 71.11 101.01

Drainage € 40 900 € 3 800 € 7 460 71.11 104.97



Cost effectiveness N-filter

FL – Measures Cost Model

Measure €/kg P

Green cover 3

Municipal WWTP 59(-163)

Reduced fertilization 70

MBBR 101-129

Individual WWTP 378-427



Farmey Survey – FL - Greenhouses

• Which requirements should the filter have? 

• Are individual or collective filters recommended? 

• Who should pay for these filters? 

29 answers



Powered by

Are you familiar with end-of-pipe technology to remove nutrients from 
agricultural waters?
Beantwoord: 29    Overgeslagen: 0

Yes

No

21%

79%



Powered by

Preferential requirements for the filter are:
Beantwoord: 20    Overgeslagen: 9

No electricity

Other

Minimal space

DIY

Build in existing drainage 

Simple handling

35%

65%

35%

55%

70%



Powered by

Which investment cost is acceptable?
Beantwoord: 20    Overgeslagen: 9

65%

30%

5%
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Within which time frame would you consider this investment?
Beantwoord: 20    Overgeslagen: 9

20%

40%

10%

30%
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Which factors influence your choice for a certain technology?
Beantwoord: 20    Overgeslagen: 9

Administration

Investment cost

Operational cost

Follow up needed

Future generations

Surface

65%

30%

80%

55%

30%

65%
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I prefer:
Beantwoord: 20    Overgeslagen: 9

Individual 
measures

Collective 
measures

55%

45%
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In case of collective measures, which financing system is preferential?
Beantwoord: 20    Overgeslagen: 9

Fixed 
price/ha

Fixed 
price/crop

15%

85%



Powered by

In case of collective measures, who else should pay?
Beantwoord: 20    Overgeslagen: 9

Government

Retail/customers

Drinking water companies

Other

75%

30%

35%

15%



Farmers’ opinion

• Simple technology required minimum of space

• Cost < € 5000

• Investments within 2-5 years

• Individual measures <-> collective measures

• Fixed price/crop



Nuredrain information

• NuReDrain, Interreg VB North Sea Region Programme

• Scientific articles

• Filter fact sheets

• Videos

• MBBR manual: working principle, calculation tool, DIY build instruction

https://northsearegion.eu/nuredrain/


Field visits with sun



Field visits with rain



Field tests in summer



Field tests in winter
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