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Introduction: Moving Bed Bioreactor

• Biological denitrification in anoxic conditions

• Moving-bed Bioreactor technology

• Biofilm growth on AnoxKaldnes® plastic carriers (K5)

• Benefits: Limited growth of biomass & high active

biomass concentration

• Treating high nitrate concentrations is possible 

𝑁𝑁𝑁𝑁2− 𝑁𝑁𝑁𝑁 𝑁𝑁2𝑁𝑁

Carbon source
(glycerol-based)

pH increase

No 
recovery 
possible

5𝐶𝐶3𝐻𝐻8𝑁𝑁3 + 14𝑁𝑁𝑁𝑁3− + 14𝐻𝐻+ → 15𝐶𝐶𝑁𝑁2 + 7𝑁𝑁2 + 17𝐻𝐻2𝑁𝑁 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏



• 50 – 200 mg NO3/L
• High flow rates (7.5 – 15 m3/d)
• November – April

• 100 – 400 mg NO3/L
• Low flow rates (3 m3/d)
• During the whole year

Tile-drained agricultural fields Greenhouse effluent

Considerations design MBBR concept

Design considerations

→ Simple and robust system
→ Low water temperatures (between 5 – 15 °C)
→ Variable flow rates and nitrate concentrations
→ Remote locations
→ Low budget solution

Discharge limit: 11.29 mg NO3-N/L



MBBR concept to treat agricultural waters

Drainage water

Discharge to surface water

Influent pump

Aeration

C-source pump

Effluent and mixing 
pump



Field Case – Tile drained fields

Measuring point of 
the Environmental 
Agency VMM

Drainage well



Field Case – Tile drained fields
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Key numbers of 2020-2021

• Drainage season: 217 days 
(from October to May)

• Tmax = 14.3 °C
• Tmin = 6 °C

• Total treated drainage water = 
2837 m3

• Flow rate: from 1.2 m3/day to 
24.5 m3/day

• Average nitrate conc.
= 30.7 mg NO3-N/L

• pH drainage water: 6.54 ± 0.17
• pH MBBR effluent: 6.73 ± 0.16



Field Case – Tile drained fields

0%

20%

40%

60%

80%

100%

N
itr

at
e 

re
m

ov
al

 e
ffi

ci
en

cy
 (%

)

0%

20%

40%

60%

80%

100%

0 25 50 75 100 125 150 175 200 225

N
itr

og
en

 re
m

ov
al

 e
ffi

ci
en

cy
 

(%
)

Time (days)

Decreased removal 
efficiency + increased 
nitrite concentration

Improved mixing

Removal efficiency
• Total period:

⎯ NO3-N: 70%
⎯ TN: 60%

• Improved mxing:
⎯ NO3-N: 87%
⎯ TN: 79%

Total nitrate removal
• 57.6 kg NO3-N



Field Case – Tile drained fields
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Moving Bed Bioreactor
• Influent

⎯ Average: 30.7 mgNO3-N/L
⎯ Min: 16.2 mgNO3-N/L
⎯ Max: 45.2 mgNO3-N/L

• Effluent
⎯ Average: 10.8 mgNO3-N/L
⎯ Min: 0 mgNO3-N/L
⎯ Max: 39.9 mgNO3-N/L

Effect on surface water
• If the removal efficiency is low, 

the nitrate concentration of the 
surface water increases

• At high removal efficiency, the 
nitrate concentration after the 
MBBR is similar or lower than 
before the MBBR.



Field Case – Greenhouse
(DIY-concept)



Field Case – Greenhouse
(DIY-concept)
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Drain water: Day 364 - 483
• Influent: 10.4 mgNO3-N/L
• Effluent: 2.0 mgNO3-N/L
• Removal efficiency: 84%

Storage pond: Day 0 - 133
• Influent: 13.3 mgNO3-N/L
• Effluent: 1.4 mgNO3-N/L
• Removal efficiency: 83%

Shut down during 
the winter



Conclusions

• Underground MBBR: temperatures higher than 5°C
• Mixing is very important: Improved removal efficiency from 

70% to 87%.
• The nitrate concentration of the surface water is similar or 

even lower when the MBBR achieves high removal rates.
• Total cost efficiency: 103.4 €/kg NO3-N



Zero Valent Iron for N and P 
removal
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The Nitrogen wheel

Denitrification 
to N2; returned 
to atmosphere

NH4
+ retention
zeolite

NO3
- to NH4

+

ZVI

NH4
+ oxidation 
to NO3

-

NO3
- leaching

Fertilizer
application

NH3 production from 
atmospheric N2
(Haber-Bosch)

soil
Subsoil; 
w

etland

Red: The classical cycle
Green: ZVI-facilitated cycle



Zero valent iron filter

• Objectives: to develop a filtration system that 

can remove nitrate (NO3
-) and recover 

nitrogen as ammonium (NH4
+) from 

agricultural drainage water.

• Field scale setup and principle

4 Fe0 + NO3
- + 10 H+ ⇄ 4 Fe2+ + NH4

+ +3 H2O

• Filter constructed of three units:

• Section 1: ZVI unit + sand; 45 kg ZVI

• Section 2: Oxidation (air bubbling)

• Section 3: Ammonium capture (zeolite); 

pre-treated with NaCl; 70 kg zeolite

• Agricultural drainage water flow: 1 L/min

• Retention time: 35-45 min for each unit
ZVI Zeolite



Results - 1

Nitrate removal

• High NO3
- removal efficiency regardless the initial nitrate concentration (3 to 8 

mg/L nitrate 
• Average NO3

- reduction for the entire running period: 94% 

NO3
- measured at 

end of column 1
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Results - 2

Nitrate is converted to ammonium

• NO3
- is converted to NH4

+. 100 % at start and then at about 70 % at end of the 
period

• Similar results as in laboratory experiments
• Incomplete conversion could be due to production of unmonitored nitrogen gas 

species (NO2, N2O, N2H4)

NO3
- and NH4

+
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Results - 3

Ammonium capture

• Almost 100 % NH4
+ retained in zeolite over the entire running period 

• No decrease of NH4
+ retention as in laboratory experiments

• Higher efficiency of zeolite layer, as in laboratory experiments

NH4
+ measured at 

inlet and outlet of 
column 3
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Results - 4

Removal of iron(II)

• 100 % of iron(II) removed through oxidation in the aeration 
section

• Iron(II) oxidized and iron(III)oxide (”rust”) precipitated (yellow-
brownish)

Fe(II) measured at 
inlet and outlet of 
column 2
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Results - 5

Phosphate is 100 % retained

• No phosphate was detected in the outlet from column 1 and 2

• Inlet phosphate concentration: 0.5 mg/L 

• Phosphate sorbed to the ”rust” formed and thus is fully retained

HPO4
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Results - 6

Green rust formation in ZVI unit

• Green rust (GR) is an unstable corrosion product that forms in the ZVI unit.

• GR facilitates reduction of nitrate to ammonium and reduces the mass of ZVI needed

• GR may also contribute to phosphate sorption



Investment cost

Results - 7

Investment and operationnal costs

Price Amount 
needed/ha/year 

(2000 m3 drainage 
water)

Price/ha/year Removal and 
recovery/ha/

year

ZVI 0,85 – 1 €/Kg 72 Kg 60 – 72 € 100% Nitrate 
removal

Zeolite 2,5 – 3 €/Kg 500 Kg 1250 – 1500 € 70% 
Ammonium 
formation + 

retention

Filter system +  tubing + 
pumps

2000 € 2000 € 14 Kg N 
retained

Total: 3500 €

Operational cost: electricity  



Filter evaluation

Pros
• Nitrate can be completely removed, even at low concentrations and low temp. ✓
• Ammonium can be recovered enabling nitrogen to be recycled ✓
• Phosphate is fully removed and can be recycled ✓
• Iron(II) formed during ZVI corrosion can be oxidized and removed ✓
• The unit advantageous for production facilities such as greenhouses ✓

Cons
• Nitrate removal can decrease due to passivating ZVI corrosion layers ✘
• Oxygen in drainage water will also consume ZVI ✘
• Reduction of water generates H2 (gas formation in column) ✘
• Maintenance: requires aeration (pump) ✘
• High iron consumption ✘

Improvements
• Smaller ZVI particles to increase reaction efficiency
• Remove ZVI corrosion layers
• Recycling of phosphate



Moving Bed BioReactor and
constructed wetland for drainage 
water 
Case study Belgium

Dominique Huits
Inagro



West Flemish agriculture in figures
 8300 farms good for 200.000 ha or 65% of the total

surface area
 63% of Flanders’ production of vegetables
 49% of Flanders’ production of arable crops



Inspired by Denmark

• New field for field trials
• Drainage to be installed
• Nitrate losses from field drainage are an

important issue to get under control

Can a constructed wetland be 
(part of) the solution?



From idea to design

1. Reservoir to collect 
irrigation water

3. Design of the drainage 
system

2. Determination of the
location for the
constructed wetland

4. Design of constructed
wetland



Design of constructed wetland 
and woodchip basin

Constructed wetland

Pond for
irrigation
water 

Woodchip filter



Denitrification units installed



Results MBBR winter period
2020-2021

01/12/2020
Start drainage season
MBBR flow 1,5 m³/h

08/02/2021-18/02/2021
Due to frost internal
recirculation of MBBR

18/02/2021
MBBR flow 1,5 m³/h

03/03/2021
MBBR flow 2 m³/h

17/03/2021
MBBR flow 2,5 m³/h

CarboST dosis : 0,13 L/h during the whole period



Results MBBR winter period
2020-2021

01/12/2020
Start drainage season

19/03/2021
End of drainage 
season



Results MBBR winter period
2020-2021



Conclusions

 First results of MBBR and wetland are quite
good

But
 Only one year of experience
 Will this work at catchment level



Q & A



Part III: The bumpy road of 
phosphate recovery and reuse



Reuse of saturated filter 
materials as fertilizer for 

ornamentals and vegetables

Els Pauwels
Ornamental Plant Research (PCS), Belgium



Project goals



Problem statement

• Phosphorus recovery potential

• Fertilizer value of recovered materials



P-removal – Column tests

• PO4-P solution: 0.5 ppm P 
• Bed height: 14 cm ⟹ corresponds with a bed volume of 150 mL
• Temperature: 20 °C
• Flow rate:  0.66 L/24 h

ICS, Diapure, Redmedite, BaseLith, LiDonit, Vito A, Vito B, LDH, FerroSorp



Problem statement

Available: ICS (Iron coated sand) : 

• Waste product from drinking water production
• Good removal of P - rich drainage waters
• High conductivity of filters (depending on size of particles)
• (Sufficiently) available and (relatively) cheap

• Reuse as a fertilizer without treatment? 



P recovery

Direct reuse as P fertilizer

• Pot trials done on Azalea, Lavender, Boxwood, Hedera, …

P strongly bound to FeO, not available for the plant 



Schematic diagram of soil phosphorus mineralization, 
solubilization and immobilization by rhizobacteria

- Predominant bacterial PSB’s (sharma et al, 2013): 
- Pseudomonas spp.
- Bacillus spp.

- P – SOLUBILIZING POTENTIAL depends on :(Sharma et al, 2013)
- Iron concentration in the soil
- Soil temperature
- C and N sources available

PSB



Addition of PSB

• PSB = Phosphate Solubilizing Bacteria
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Trials Inagro in agriculture

Endive:
growth chamber experiment + pot experiment
Use of ICS as a P – fertilizer
Use of PSB’s
Evaluation of commercial products

Maize: 
Pot experiment
Evaluation of commercial products



Trial PCS: 14 different plant species



Trial PCS: As addition to the substrate? 
Chlorophytum



Exceptions

• Chlorophytum

left without ICS – right with ICS

• Chrysanthemum

• Petunia



Trial PCS 2020

20 plants/treatment
• 1. Control
• 2. 30% ICS grains
• 3. 30% pellets



Trial 2020



Trial 2020

Flowering on the 15th

of October: left
standard, middle 30%
pellets and right 30%
ICS grains



Other possibilities to use ICS?



Thank you

• Subscribe to our newsletter: https://northsearegion.eu/nuredrain/news/

• Els Pauwels- els.pauwels@pcsierteelt.be - +32 9 353 94 88

https://northsearegion.eu/nuredrain/news/
mailto:els.pauwels@pcsierteelt.be
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