

Preparatory Activities/ Enginnering for Recovery of offshore Wind Park Submarine Cable

February 2021

Company Introduction

Horizon GmbH

CEO: Capt. M.R. ILIATI

Operating in Europe

Essen, Germany

www.horizongmbh.net

Deep Sea Offshore Int.

CEO: Capt. M.R. ILIATI

Operating in Middle East

Dubai, UAE

www.deepseaoffshore.net

of

39

2

Service Capabilities

Geophysical Seabed Services

UXO Survey Services

Engineering Services

ROV Services

Horizon GmbH

PHOTOGRAMMETRY & REMOTE SENSING

Diving Services

Geotechnical Services

Positioning Services

Track Records (2011-2020)

Categories	No. of Jobs				
Geophysical Site Survey	58				
Geophysical Route Survey	24				
Geotechnical Investigation	9				
ROV Services	53				
Positioning Services	22				
Diving Services	23				
Engineering	14				
Cable Activities	3				
Construction Jobs	11				
Rig Movement	3				
Ship Management and Logistics	10				

< 4 of 39 🕨

Preparatory Activities for Removal of Cable

of

6

- Removing Protection of Cable in Crossing Area
- Cutting Cables in Crossing Area
- Cutting Cables near J/I Tubes
- Connect the Buoy to Loose Heads of Cable
- Securing the Loose Heads of Cable for Avoid Further Moving
- Removal of Marine Growth

Preparatory Activities for Removal of Cable ROV Assets

Swift XL09

- ✤ 125 HP Work Class ROV
- 2000 m Rated

Explorer3

- 100 HP Work Class ROV
- 1000 m Rated

ROV Benefits Vs. Diver:

- Quick Deployment
- Extended Dive Times
- Video Recording Capabilities
- Fit into Confined Areas
- Safety Improvement
- Cost-Effective
- Minimal Maintenance

Preparatory Activities for Removal of Cable Diving Assets

RE

Preparatory Activities for Removal of Cable Diving Assets

RE

Preparatory Activities for removal of cable Visual Inspection of Cable Status Before Cutting

Cable Status in J-Tube

Cable Status in I-Tube

Preparatory Activities for Removal of Cable

Visual Inspection of Cable Status Before Cutting

Cable Status in Crossing Area

Preparatory Activities for removal of cable Removing Protection of Cable in Crossing Area

Remove mattress from crossing of cable

Existing mattress protection should be removed

Remove sandbag protection from cable

Preparatory Activities for Removal of Cable

ROV/Diver Tools for Cable Cutting and Remove Marine Growth

• The Stanley GR29 is a portable tool, designed for use by a diver or ROV.

Hydraulic Grinder

 Sample of compatible tools of ROV And divers for removing marine growth

Multipurpose Cleaning Tool

Preparatory Activities for Removal of Cable ROV Mobilization for Cutting of Pipeline/Cable

Mobilized ROV for cutting pipeline

Using underwater positioning to fix the cutting point

Start cutting pipe using hydraulic cutter

Deep Sea Offshore International is Removal (Nasr-57-Pipe Cutting E: 202106.7 DPT: 02.20 Debris 20:15:51

Pipe has been cut by ROV

Preparatory Activities for Removal of Cable

Sample Video of Cutting 4inch Pipeline by ROV

Preparatory Activities for Removal of Cable

Connect Buoy to the Loose Heads of Cable and Securing

• Connecting Buoy to Loose Heads of Cables

 Securing of Loose Heads of Cables

(MAXSURF)

BENTLEY

Potentials

- Hydrostatic Analysis
- Tank Arrangement
- Tank Calibration

- Load Arrangement
 - Stability Analysis (Intact damaged)
- Structural Strength Analysis
- RAO Calculation
- Motion Sickness Indication (MSI)
- **Resistance** Calculation
- Minimum Required Power Estimation

AQWA

Potentials

.

- Stability analysis
 - Hydrodynamic analysis
- Time response analysis
- Rao calculation

- Mooring analysis
- Drift Analysis
- Winch-fender-Joint-mooring failure
- Hydrodynamic interaction analysis
- Scenario Based Analysis

SOLID WORKS

Potentials

International

- Structural modeling
- Structural analysis
 - Structural cost study analysis

- Flow simulation analysis
- Aerodynamic Analysis
- Drag coefficient Calculation

Potentials

- Riser, Cables; SCR, TTR, hybrid, flexible, umbilical.
- Anchor Pattern: spread, turret, SPM, jetty, etc.
- Anchor Calculation; Drag and Penetration.

.

- Installation planning, full range of scenarios
- Towed systems: bundle dynamics, towed bodies, etc.
- Seabed stability and other types of system

Anchor Pattern and Mooring Analysis

Engineering

Sample of Works

- Hydrostatic Modeling and Stability Check
- Hydrodynamic Modeling and RAO Calculation
- Anchor Pattern, Intact, Damage Analysis

						Mooring Lines				Anchor								
	Line ID	Max. Tension (kN) Top End	Max. Tension (t) Top End	Max. Tension (t) Bottom End	Max. Tension (kN) Bottom End	MBL (t)	SF	API Rec. SF	Remark	Anchor Holding Cap. (t) Soft clay	SF	API Rec SF	Remarks	Anchor Weight (t)	Wire Length (m)	Uplift Force (t)	SF	Remarks
W-E wave heading 1.5m 4.5s	S1	104.1575	10.62	113.34	11.56	114	10.73	1.67	OK	45	0.26	0.8	OK	3	306.22	2.64	1.135494	OK
	S2	77.1815	7.87	74.00	7.55	114	14.48	1.67	OK	45	0.17	0.8	OK	3	311.25	1.70	1.767494	OK
	P1	323.0769	32.95	320.54	32.69	114	3.46	1.67	OK	45	0.73	0.8	OK	3	393.58	5.81	0.516026	Not OK
	P2	276.8021	28.23	274.08	27.95	114	4.04	1.67	OK	45	0.62	0.8	OK	3	376.75	5.19	0.577688	Not OK
NW-SE wave	S1	138.1038	14.08	135.43	13.81	114	8.09	1.67	OK	45	0.31	0.8	OK	3	306.22	3.16	0.950215	Not OK
	S2	132.0865	13.47	129.18	13.17	114	8.46	1.67	OK	45	0.29	0.8	OK	3	311.25	2.96	1.012561	OK
neading 1.5m	P1	211.3347	21.55	208.89	21.30	114	5.29	1.67	OK	45	0.47	0.8	OK	3	393.58	3.79	0.791823	Not OK
4.55	P2	123.395	12.58	120.60	12.30	114	9.06	1.67	OK	45	0.27	0.8	OK	3	376.75	2.29	1.312872	OK
N-S wave heading 1.5m 4.5s	S1	321.7245	32.81	319.59	32.59	114	3.47	1.67	OK	45	0.72	0.8	OK	3	306.22	7.45	0.402672	Not OK
	S2	304.1057	31.01	301.45	30.74	114	3.68	1.67	OK	45	0.68	0.8	OK	3	311.25	6.91	0.433915	Not OK
	P1	188.2715	19.20	185.70	18.94	114	5.94	1.67	OK	45	0.42	0.8	OK	3	393.58	3.37	0.890732	Not OK
	P2	94.8809	9.68	90.88	9.27	114	11.78	1.67	OK	45	0.21	0.8	OK	3	376.75	1.72	1.742162	OK

Crossing Support and Mattress Installation

- Loading Arrangement
- Bollard Pull Calculation
- Transferring and
- Installation Procedure

Crossing Supports Inst.

Loading and Transportation Procedure

- Transferring and Installation
- Hydrodynamic Calculation of the Vessel Body
- Lifting Analysis of the Support
- Min. Req. Rigging Specifications

Engineering

Sample of Works

Backfilling Offshore Operation

- Barge, DP Vessel, Stability check
- Hydrodynamic Analysis
- RAO Calculations
- Bollard Pull Calculation
- Towing Analysis

FO Cable Pulling

- Hydrostatic Modeling and Stability Check
- Hydrodynamic Modeling and RAO Calculation
- Cable Floatation Analysis
- Rigging Requirement Specification
- Project Execution Plan

SPM Recovery Modeling

- Loading Arrangement
- Flexible Hose Modeling
- DP Vessel Modeling
- Installation Procedure

27 of 39

>

Free Span Rectification

- Hydrodynamic Calculation of the Vessel Body
- Sea-fastening Analysis of Cement Bunkers
- Lifting Analysis of the Basket
- Min. Req. Rigging Specifications

Objectives of Engineering:

- Calculation and Analysis for Safe Recovering of Cable
- Simulation/Modeling of Recovering of Cable
- Engineering Report/Procedure for Recovery of Cable

31 of 39

∕≻

Effective Parameters

32 of 39

SOIL RESISTANCE

Effective Parameters

Cable Specification

	D	Cable diameter				
ab	m	Mass per Unit Length				
lel	EI	Bending stiffness				
Parameter	AE	Axial Stiffness				
	MBR	Minimum allowable bending radius				
	r	Roughness factor				
	CBL	Cable breaking load				

Cable Removal Simulation Procedure

< 34 of 39 🗲

orcina

Cable Removal Simulation

Engineering for Removal of Cable

Result and Discussion

Question/Answer

Thanks for Your Kind Attention

February 2021

