

European Regional Development Fund

EUROPEAN UNION

NuReDrain Webinar II:

P recovery and P removal modelling

- Please mute yourself.
- Feel free to ask questions in the chat.
- The webinar will be recorded.
- Handouts will be put available afterwards.

- Nutrient Removal and Recovery from Drainage water
- 1/3/2017 30/9/2021
- Interreg North Sea Region
- Project cost: € 2 674 405 Fund: € 1 337 203
- II partners in 3 countries

Project goal

Agricultural waters

drainage water

greenhouse effluent

NuReDrain

surface water

water reservoir for drinking water production

6 field cases

P recovery

Modelling

Integration of P-adsorbing material in a circular process

European Regional Development Fund

EUROPEAN UNION

Reuse of saturated filter materials as fertilizer for ornamentals and vegetables

Els Pauwels

Ornamental Plant Research (PCS), Belgium

Problem statement

P-removal – Column tests

- PO₄-P solution: 0.5 ppm P
- Bed height: 14 cm \Rightarrow corresponds with a bed volume of 150 mL
- Temperature: 20 °C
- Flow rate: 0.66 L/24 h

Available: ICS (Iron coated sand) :

- Waste product from drinking water production
- Good removal of P rich drainage waters
- High conductivity of filters (depending on size of particles)
- (Sufficiently) available and (relatively) cheap

• Reuse as a fertilizer without treatment?

Trials at PCS

Pot trial 2017:

- On azalea
- Low pH
- From ICS, there was almost no natural desorption of P, a little desorption of N
- Plants with ICS were of a lower quality compared with the control due to a P shortage

Table: Overview N and P dose for each tested species

	Treatment 1		Treatment 2			Treatments 3			
	Standard N and Standard P			Standard N without P			Standard N without P but with 30% ICS granules		
	N (g/l)	P ₂ O ₅ (g/l)	K (g/l)	N (g/l)	P ₂ O ₅ (g/l)	K (g/l)	N (g/l)	P ₂ O ₅ (g/l)	K (g/l)
Lavendula	420	245	665	420	0	663	420	0	663
Buxus	625	315	420	623	0	414	623	0	414
Hedera	525	315	420	537	0	414	537	0	414

Growth with standard N and standard P best No phytotoxicity effects Difficult to remove ICS grains for analysis

Trial PCS 2018: Buxus, Lavendula and Hedera

PSB

Schematic diagram of soil phosphorus mineralization, solubilization and immobilization by rhizobacteria

- Predominant bacterial PSB's (sharma et al, 2013):
 - Pseudomonas spp.
 - Bacillus spp.
- P SOLUBILIZING POTENTIAL depends on :(Sharma et al, 2013)
 - Iron concentration in the soil
 - Soil temperature
 - C and N sources available

Trial PCS 2019: Hedera

proefcentrum voor sierteelt

Treatment		
1	Standard N and Standard P	
2	Standard N without P	Potting: End of 1,5 L pot
3	Standard N without P but with 30% ICS granules	Open an
4	Standard N without P but with 30% ICS granules + dose 1 of PSM1	
5	Standard N without P but with 30% ICS granules + dose 2 of PSM1	
6	Standard N without P but with 30% ICS granules + dose 1 of PSM2	
7	Standard N without P but with 30% ICS granules + dose 1 of PSM3	# P

Trial PCS 2019: Hedera

Endive:

growth chamber experiment + pot experiment Use of ICS as a P – fertilizer Use of PSB's Evaluation of commercial products

Maize: Pot experiment Evaluation of commercial products

Pot trial maize P-fertilisation with ICS

Phosphorous fertilization value of P-saturated ICS in combination with PSB (Psolubilizing bacteria) in maize

- 1. Control (untreated)
- 2. APP (ammonium polyphosphate) = reference
- 3. TSP (triple superphosphate)
- 4. PT mix + ICS
- 5. PT mix
- 6. PT mix + TSP
- 7. Pseudomonas putida + ICS
- 8. Pseudomonas putida
- 9. Pseudomonas putida + TSP

Overall conclusion pot trials endive and maize

- -> fertilisation treatments with TSP or APP have significant the highest relative yield
- -> no positive effects of the use of PSB's in combination with ICS
- No indication that phosphorus rich material (ICS) has a potential as P-fertilizer
- No added value of PSB's in combination with ICS

Against slugs?

- Ironmax Pro (2,4% iron phosphate) (10721P/B),
- Sluxx (3% iron phosphate) (9722P/B),
- Derrex (3% iron phosphate) (9904P/B)

Azalea indica 'Fluostern' Calluna vulgaris 'Siska' Camelia Chamaecyparis lawsoniana Elwoodii Chrysanthemum 'Salomon Surfer mauve and Chrysanthemum Sevilla orange bicolor "Josevor" Erica x darleyensis 'kramer's rood' Euonymus fortunei 'Emerald Gaiety' Hydrangea paniculata 'Phantom' Lavendula angustifolia 'Munstead' Pelargonium zonale Dark 'Clara White' Petunia surfinia var. Purple Rhododendron ponticium 'Graziella' Thuja occidentalis 'Brabant' Waldsteinia ternata

Trial PCS: 14 different plant species

Trial PCS: As addition to the substrate? Chlorophytum

• Evaluation at end of trial (16/07/2018)

rooting 5 (left) – rooting 7 (right)

			Fresh weight (13	Visual plant
	# rootings trough pot	rootscore 1-7	plants)	quality
With ICS	8,3	6,2	333,13	9
Without ICS	8,5	6,2	310,37	9

Trial PCS: As addition to the substrate?

• Evaluation at end of trial

Chlorophytum

left without ICS – right with ICS

Exceptions

Chrysanthemum

Chlorophytum

left without ICS – right with ICS

• Petunia

20 plants/treatment

- 1. Control
- 2. 30% ICS grains
- 3. 30% pellets

Trial 2020

Other possibilities to use ICS?

p 20 Standard N without P + 30% | ¤ Standard·N·+·standard·P¤ Standard · N·without · P¤ **ICS**¤

Other possibilities to use ICS?

North Sea Region NuReDrain

Camellia

• As a cover material?

Other possibilities to use ICS?

Interreg North Sea Region

Other possibilities to use ICS?

North Sea Region

European Regional Development Fund EUROPEAN UNION

European Regional Development Fund EUROPEAN UNION

- <u>http://northsearegion.eu/nuredrain/</u>
- Subscribe to our newsletter: <u>https://northsearegion.eu/nuredrain/news/</u>
- Els Pauwels- els.pauwels@pcsierteelt.be -+32 9 353 94 88

European Regional Development Fund

EUROPEAN UNION

Webinar II: Recovery of phosphorus by chemical treatment

Nico Lambert – KU Leuven Process & Environmental Technology Lab KU Leuven

Introduction

- Water flows from agriculture, e.g.,
 - Drainage water originating from tile drained agricultural fields
 - Greenhouse effluent
- \rightarrow contain phosphate amounts of unused fertilizers
- ightarrow above the standard limits for surface water

Proposed solution:

Adsorption technology using Al and Fe based Padsorbing materials: Iron Coated Sand (ICS), Vito A and B, DiaPure.

Relevant research question:

What about the saturated adsorption material: should it simply be disposed of as solid waste? When is recovery/regeneration recommended?

Integration of P-adsorbing material in a circular process

Introduction

Prospects for P-recovery:

- The main objectives:
 - Regeneration of the saturated sorbents making it reusable in several adsorption/desorption cylces and
 - **Recovery of phosphorus** by precipitation or used directly with irrigation water as fertilizer .
- The reusability of the granules is as important (or even more) than recovering phosphate
- Different desorption reagents: inorganic and organic acids, chelating agents and alkaline solutions, are already proposed in the literature
- A desorption process using an **alkaline** solution is proposed without harming the adsorbing material.

Integration of P-adsorbing material in a circular process

Theoretical basis:

Introduction

- The influence of initial pH on the adsorption capacity q_e for ICS
- Adsorption/desorption are balancing processes until an equilibrium is reached!
- pH 8.7 = pH_{PZC} (Point of Zero Charge)
 = final pH is equal to the initial pH
- pH range 1 8.7: high q_e
- pH range 8.7 13: low q_e
- pH>11 the q_e drops considerably

Theoretical basis:

- Li et al. (2016): higher pH = the phosphate adsorption is affected by
 - the electrostatic repulsion (surface is negatively charged) and
 - increasing competitive effect of OH- ions for the active sites on the sorbent
 - =decreased adsorption capacity.

Li, M., Liu, J., Xu, Y., Qian, G., 2016. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 24, 319–332.

Desorption Phase: Day 180 P() PO 1 0,9 PO PO, 0,8 PO4 PO4 0,7 PO, POA 0,6 DO 0,5 O/C PO PO experimental data PO 0,4 C/C0<0.1 PO PO, 0,3 POA PO, NaOH 0,2 PO₄ PO₄ PO₄ PO₄ 0,1 0 200 300 500 600 0 100 400 Time (days)

Materials & Methods

- 1. Batch desorption experiments: 5g of predried saturated ICS was brought into contact with NaOH solution.
 - Variable parameters:
 - NaOH concentration (1-0.5-0.1- 0.01- 0.001M),
 - Desorption time (5min-48h)
 - Solid/liquid ratio (S/L= 0.03-1 g/mL)
- 2. Continuous filter desorption experiment: 1 liter of NaOH solution was recirculated over an adsorption column filled with 128 g of saturated ICS granules.
- 3. Analysis of the samples: Liquids: PO₄-P determination by ion chromatography after .45 μm filtration. Solid grains: SEM-EDX

Results & Discussion Batch experiments

- The composition of 1 g of saturated ICS granules was determined by a complete destruction of the granules by Aqua Regia and ICP analysis:
 - Phosphorus: 15.30 +/-1.25 mg P/g DS =1.5%P
 - Iron: 590.7 +/-8.7 mg Fe/g DS =59%Fe
- Figure 1: A minimum desorption time of 24 hours and a NaOH concentration of 0.1 -1M is necessary to ensure a sufficiently high desorption efficiency.
- Figure 2: The solid over liquid ratio (S/L expressed in g/mL) has a pronounced effect on desorption efficiency. An S/L lower than 0.10 g/mL is recommended.

erreg

pean Regional Development Fund EUROPEAN U

North Sea Region

NuReDrain

Figure 1: Influence of NaOH concentration and desorption time.

Figure 2: Influence of solid/liquid ratio.

Figure 4: The progress of the desorption during the first hour of the continuous filter desorption experiment

Results & Discussion Continious filter experiments

- Figure 3: Continuous desorption filter experiments show that only a concentration of 0.5 and 1M NaOH lead to a desired desorption of phosphorus from the ICS granule. At least 24 hours desorption time must be provided.
- Figure 4: During the first hour of the continuous desorption experiment only 0.4 mg P/g DS and 0.9 mg P/g DS can be leached for a NaOH concentration of 0.5 and 1M respectively. A concentration of 0.1M NaOH desorbed almost no phosphorus.

Figure 3: Continuous filter desorption experiment and the effect of the NaOH concentration on desorption capacity

Results & Discussion SEM-EDX analysis

• Energy-dispersive X-ray (EDX) Analysis with a Scanning Electron Microscope (SEM) of saturated ICS from two column experiments.


```
Figure 5: Adsorption column experiments on lab-scale (influent P concentration = 25 mg PO_4-P/L) with EBCT= 5.5 h (a) and EBCT= 0.5 h (b)
```

 Figure 5: The breakthrough curve of column experiments with an Empty Bed Contact Time (EBCT) of 5.5 h and 0.5 h results in a breakthrough time of 180 days and 7 days respectively.

Results & Discussion SEM-EDX analysis

- Energy-dispersive X-ray (EDX) Analysis with a Scanning Electron Microscope (SEM) of saturated ICS from two column experiments.
- Figure 6: SEM-EDX of saturated ICS of column experiment with EBCT of
 0.5 h. The phosphate is mainly adsorbed at the outer layers of granules.

polished ICS granules embedded in a resin

Results & Discussion SEM-EDX analysis

- Energy-dispersive X-ray (EDX) Analysis with a Scanning Electron Microscope (SEM) of saturated ICS from two column experiments.
- Figure 7: SEM-EDX of saturated ICS of column experiment with EBCT of
 5.5 h. phosphorous is accumulated at the sand core of the granule = phosphorous migrates towards the core of the granule.

Si – Fe – P analysis by EDX

- Optimal NaOH concentration = 0.5 M
- Optimal contact time = 24 hours or more
- Optimal S/L ratio = 0.10 0.05 g/mL
- P-desorption efficiency = 40% @ 0.5 and 1 M NaOH
- Leaching of Fe during the desorption process is a problem
- Desorption of P from the inner layers of the granule will be a problem

- What to do next?
 - Investigating whether other adsorption materials are better suited for desorption: Vito materials and DiaPure?
 - Looking for ways to reduce desorption pH.
 - Carrying out continuous long-term column tests in which cycles of adsorption and desorption are completed → To do in the coming months.

European Regional Development Fund EUROPEAN UNION

Q&A

European Regional Development Fund

EUROPEAN UNION

Phosphorus Removal Modelling – From a Single Filter to an Entire Catchment

Stefan Koch, Andreas Bauwe, Bernd Lennartz

European Regional Development Fund EUROPEAN UNION

INTRODUCTION

- Eutrophication is a major threat to coastal ecosystems
- Harmful algae blooms may cause deoxigenation of water bodies
 - May not only occur in deep waters of oceans
- Nitrogen (N) and phosphorus (P) inputs from agriculture are a critical source of excess nutrients in surface waters

(ESA/ESA/The Guardian/GreatLakesNow)

Eutrophic Areas in the North Sea

European Regional Development Fund EUROPEAN UNION

STUDY SITE AND METHODS

- Belgian (Flemish) Watershed, 74 km², situated in Western Belgium
- Agriculture (61.85 km²; 83%) is the major land use in the Kemmelbeek Watershed

The Kemmelbeek Watershed

• A heavily tile-drained lowland watershed dominated by loamy soils

• Elevated TP concentrations in the Kemmelbeek Watershed -> reduction required

	mean	max	min	Mean load yr ⁻¹		
N (mg/l)	9.5	14.6	3.6	8.9 kg ha ⁻¹		
P (mg/l)	0.6	1.9	0.2	0.3 kg ha ⁻¹ (PO ₄)		

The Soil and Water Assessment Tool (SWAT MODEL)

- Soil and Water Assesment Tool (SWAT model) to model streamflow and P loads in tile drains
 - Physically-based eco-hydrological model with a tile-drainage routine
 - Spatial resolution: HRU (Hydrological Response Unit)
 - Temporal resolution (according to Input data, hourly to yearly)

- Nash Sutcliffe Efficiency (NSE) as evaluation index
 - Range from $-\infty$ to 1 (1 is perfect model fit)
 - Values above 0.5 considered as "good", above 0.75 as "very good"

European Regional Development Fund EUROPEAN UNION

RESULTS

Calibration of Flow and Phosphorus loads

 Measured monthly flow/DRP loads (blue) vs. modelled flow/DRP loads (red) in the calibration period

• Sum curves of observed vs. modelled flow and DRP loads and scatterplots of observed and modelled flow and DRP loads in the calibration period

• Realistic **distribution of flow parameters** is crucial for process understanding and the implementation of scenarios

Year

Reduction Sceanrios

- P filters with iron-coatedsand (ICS) in a filter boxapplied to selected HRUs
- Easy to install

٠

- High P removal
 - efficiency (80-90%)
- Low cost installation
- Does not cause any impairment of surface waters

• P filters applied to different areas of drained agricultural areas

	Scenarios								
Proportion of area equipped with a filter	5	10	15	25	50	75	100		
Area (ha) Number of	310	619	929	1548	3095	4643	6191		
drainage plots (6 ha per collector drain)	51	103	154	257	515	773	1031		
Annual costs (€)	16.218	32.754	48.972	81.726	163.770	245.814	327.858		

• P filters applied to different fractions of drained agricultural areas

			Reduction Scenarios						
	Base Model		(percentage of agricultural area equipped with P filter)						
	obs P	mod P	5	10	15	25	50	75	100
P load (kg)	10841	10054	9800	9556	9400	8521	6918	5491	3462
P load									
reduction (kg)			254	498	654	1533	3136	4563	6592
Reduction (%)			3	5	7	15	31	45	66

• The installation of P filter may cause a 66% reduction of the total DRP load

- Long-term studies on in-situ filter techniques will improve the development and implementation of scenarios to hydrological models
- In-situ tests of different filter materials will help getting a wide range of scenarios of P reduction
- Using the same approach for developing N reduction scenarios

European Regional Development Fund EUROPEAN UNION

Thank you for your attention Q&A

- Friday 2/10 – 10h – 11h30:

Filter technologies for N removal from agricultural waters

https://northsearegion.eu/nuredrain/

Acknowledgements

