

European Regional Development Fund

EUROPEAN UNION

NuReDrain Webinar I:

Filter technologies for P removal from drainage water

- Please mute yourself.
- Feel free to ask questions in the chat.
- The webinar will be recorded.
- Handouts will be put available afterwards.

- Nutrient Removal and Recovery from Drainage water
- 1/3/2017 30/9/2021
- Interreg North Sea Region
- Project cost: € 2 674 405 Fund: € 1 337 203
- II partners in 3 countries

Project goal

Agricultural waters

drainage water

greenhouse effluent

NuReDrain

surface water

water reservoir for drinking water production

6 field cases

6 field cases

European Regional Development Fund

EUROPEAN UNION

NuReDrain

Phosphorus filtration in drained arable fields

results from 2nd season

High P losses in drained fields

North Sea Region NuReDrain

Lowland and peat soils

North Sea Region NuReDrain

Test site specification

- Field size:
 - Topsoil: loamy sand, >15% organic substance
- 8,2 ha
- Drainage:
- P expected: P_{total}
- single tile drains (8-10 m distance) ~4,0 mg/l
 - P_{soluble} ~0,3 mg/l
- Discharge of amorphous organic substance !!!

Setup P filter

ICS from drinking water purification Automatic flow measurement and drainage water sampling H Ē ()+P → - P = Flow direction ⇒ **Pre-Filter**

Venner Bruchkanal

P-Filter

European Regional Development Fund EUROPEAN UNION

Drainage water samples

Filter

	P tot. (mg/l)	P sol. (mg/l)		
min	0,04	0,01		
max	3,19	0,02		

... revision sampling mode & position

opean Regional Development Fund EUROPEAN UNION

Flow-balanced nutrient discharge

- P_{tot.} is retained after filter revision
- clear reduction of P_{tot}, by filtering
- the total P discharge is mainly determined by particulate bound P

- $P_{sol.}$ is retained by filter
- no significant reduction of P_{sol}.
- 7% P_{sol.} of P_{tot.}

Flow rate, retention of P total and P soluble

- **↑** fluctuation in flow rate
- (no) effect of flow rate on retention of P_{sol}.
- no clear statement about effect of flow rate on P_{tot}, retention (hysteresis effect)

Extrapolated P loss/season without & with P-filter

Cross-check with literature

opean Regional Development Fund EURO

- ... average P_{tot} export 0,29 kg ha⁻¹ y⁻¹ ...
- ... P mainly in particulate form ...
- ... 50 % of the annual P_{tot.} export in 140 h, hysteresis effect ... (Ulén & Persson 1999, Hydrological Processes Vol. 13, Iss. 17)
- \rightarrow more data required for statements
- ... tile discharge highly variable within events ... (Macrae et al. 2007, J. Agr. Wat. Man. Vol. 92, Iss. 3) \rightarrow we can confirm that so far
- ... the amorphous organic substance is a carrier of P and causes a high P input into surface water ...

(Zimmer et al. 2016, Agricultural Water Management 167)

- \rightarrow can explain large differences in results between season 2 & 1 (not shown)
- ... ICS has a potential for field use due to its high hydraulic conductivity ... (Chardon et al. 2012, J. Environm. Qual., Vol. 41)
- \rightarrow due to low hydraulic gradients in the field, it is important to ensure a sufficient hydraulic conductivity of the filter material

... ICS filter efficiency of >80 % in investigations of other project partners ... \rightarrow can be confirmed so far

New installation **Extension** of existing drainage collector systems

Benefits

- Cheap filter material ICS
- Low space consumption
- No energy supply
- Renewable (in own work)
- Long-term filter effect
- Mechanical lifting of filter material

- Have a good measuring season
 - \rightarrow **avoid** data loss (poor measuring conditions, damage or malfunction)
 - \rightarrow **avoid** erratic measurement data (backwater, clogging, pref. flow)
- Expand database \rightarrow long term filter performance
- Improve P-filter \rightarrow **put it into practice**

But before...

- 1. Farmer survey \rightarrow farmers needs & wishes (\in , §)
- 2. Develop cooperation (willingness to cooperate & practical implementation)
- 3. Follow-up project with an improved starting point thanks to all project partners!

Q & A

North Sea Region NuReDrain

EUROPEAN UNION

New P filter demo site at Fensholt in Denmark

Lorenzo Pugliese Goswin Johann Heckrath

P losses in DK

Catchment area

System Design

Sediment filter

Reactive filter

Monitoring programme

Results – Dissolved reactive phosphorus

Results – Turbidity

	0	Average removal (%)					
	(m ³)	ISCOin-ISCOout		ISCOsed-ISCOout			
		ТР	TDP	Turb	ТР	TDP	Turb
Until 18 oct	1413	51	39	44	59	40	53
After 18 oct	3538	1	-6	-8	15	-13	5
feb-20	6346	19	-1	13	18	-5	17

European Regional Development Fund EUROPEAN UNION

Challanges

- Sediment retention
- Replacement of reactive filter material

Possible improvements

- Alternative physical removal of sediments (?)
- Flocculation with aluminium and iron

European Regional Development Fund

EUROPEAN UNION

Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (ICS) filters

Hui Xu, Stany Vandermoere, Stefaan De Neve Department of Environment Ghent University

Why is it important?

In Northwest Europe, agricultural P losses

 \rightarrow eutrophication problems in surface water

High to very high soil P test values

17—40 % is drained in NW Europe

• Reduce P loads as much as possible

(< 0.1 ppm, Water Framework Directive)

- For individual drainage pipe with water flow of
 6-8 m³ per day
- Process discontinuous flows
- Low cost and easy to install

- > Phosphorus sorbing materials (PSM) & Principle
- Lab-scale evaluation
- Field-scale evaluation
- Development of prototype
- Performance of prototype

Iron coated sand (ICS)

By-product from drinking-water industry

Ball-milled and acid pretreated glauconite

Abundantly available natural mineral

Vandermoere S., Ralaizafisoloarivony N., Van Ranst E., De Neve S. (2018). Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters. Water Research, 141, 329–339. https://doi.org/10.1016/j.watres.2018.05.022

Principle: P is removed from water by absorbing into iron coated sand (ICS)

Sufficient P removal

Vandermoere S., Ralaizafisoloarivony N., Van Ranst E., De Neve S. (2018). Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters. Water Research, 141, 329–339. https://doi.org/10.1016/j.watres.2018.05.022

At field scale

Three experimental sites Brugge Oostende Zedelgem Gent Staden Aalst Roeselare Anzegem Kortrijk

Zedelgem

-three individual drains -max water flow 8 m³/day

Simple bucket filter

Prototype development

European Regional Development Fund EUROPEAN UNION

Key features:

upward-oriented outletmesh netting at bottom & top

P removal efficiency

TP: total phosphorus DRP: dissolved reactive phosphorus

Prototype performance

-Seasonal variation

P removal efficiency

2017-2018

2018-2019

Prototype performance

-Effect of particle size

P removal efficiency

- Only applicable for individual drains
- Mostly remove dissolved reactive P
- + Low-tech solution: easy installation and operation
- + High P removal efficiency
- + Low cost of filter materials: ICS is industrial by-product
- + Causes no other contaminations
- + No impact on accessability and landscape

European Regional Development Fund EUROPEAN UNION

Q&A

- Friday 25/9 – 10h -11h30:

P recovery and P removal modelling

- Friday 2/10 – 10h – 11h30:

Filter technologies for N removal from agricultural waters

https://northsearegion.eu/nuredrain/

Acknowledgements

