

About Me

- Associate professor at University of Groningen
- Research fellow of Groningen Digital Business Center (GDBC)
- Director of master programme in change management
- Director of digital business focus area
- PhD in information systems
- Senior editor of Information Technology & People
- Associate editor of Information & Management
- Chair of big data analytics track at Wuhan International Conference on E-Business (WHICEB)

. . .

Our Insights

How We Help Clients

Our People

Careers

Contact Us

AIRBNB

The largest accommodation provider owns no real estate.

@BUSINESSMINDSET101

ALIBABA

The most valuable retailer has no inventory

FACEBOOK

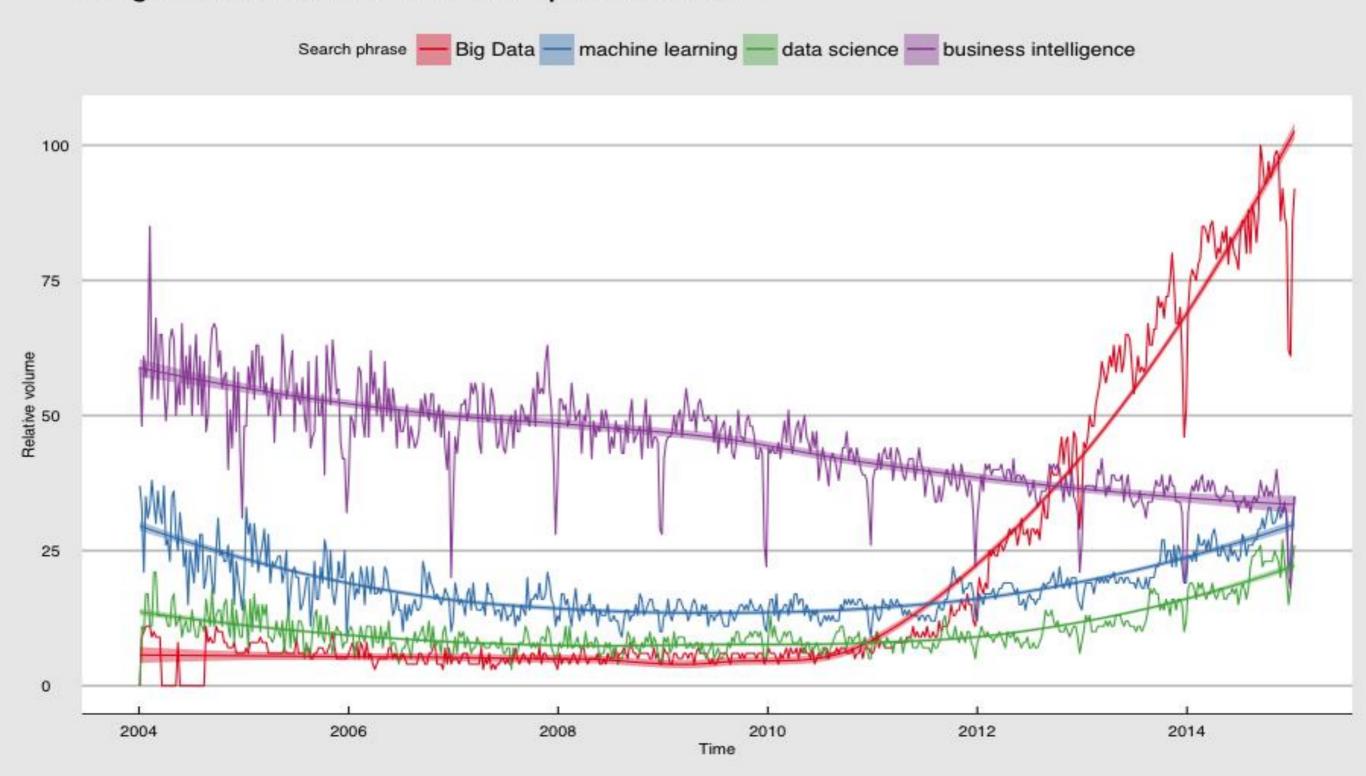
The most popular media provides no content.

INSTAGRAM

The most valuable photo company sells no cameras

NETFLIX

The largest growing television network lays no cables.


The largest

taxi company owns no vehicles.

The most valuable asset that any company can have is DATA!

Big Data

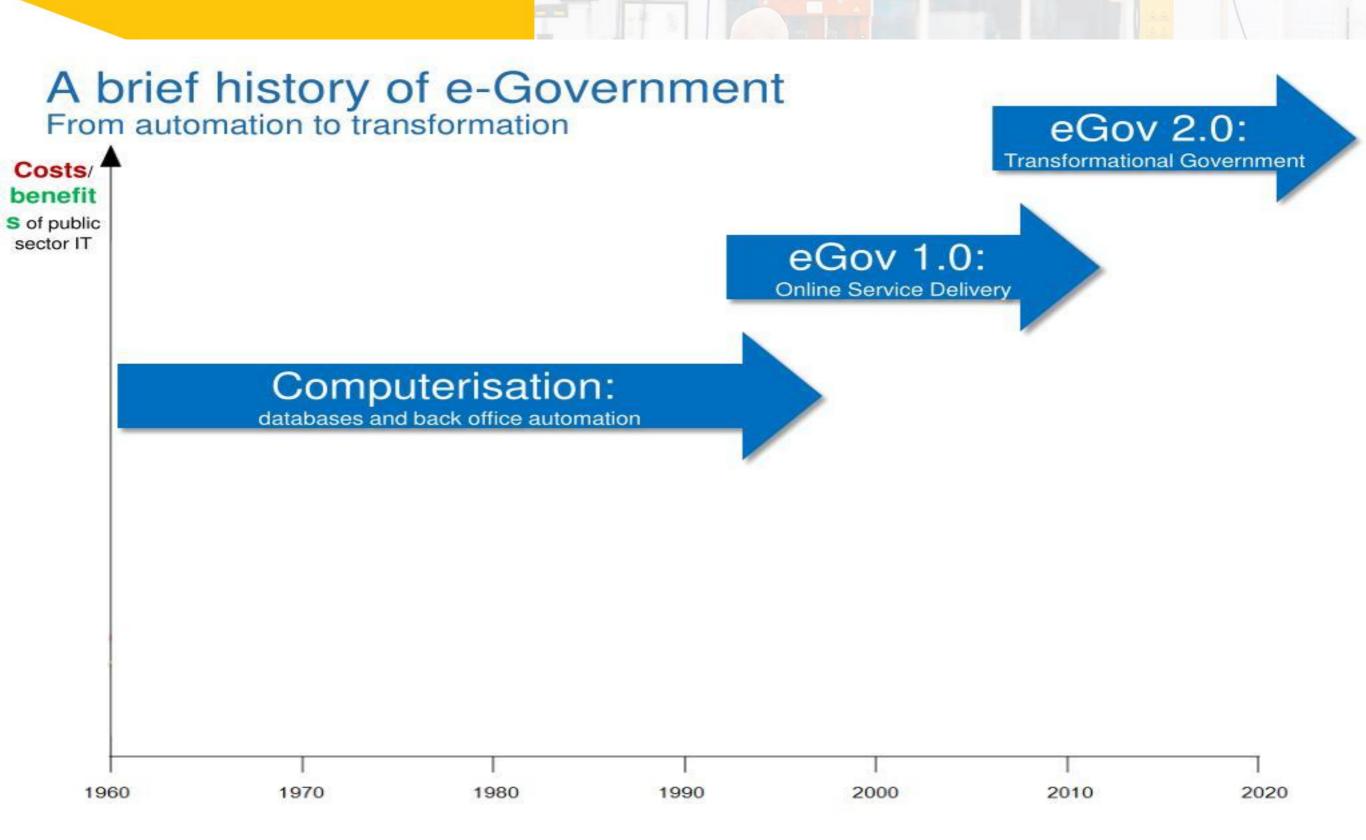
Google Search volume for data related phrases over time

What Is It

The six Vs of big data

Big data is a collection of data from various sources, often characterized by what's become known as the 3Vs: *volume*, *variety and velocity*.

Over time, other Vs have been added to descriptions of big data:


VOLUME	VARIETY	VELOCITY	VERACITY	VALUE	VARIABILITY
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.	The ways in which the big data can be used and formatted.
0000	₹ <mark>%</mark> *				A

Analytics

Table 1. Bl&A Evolution: Key Characteristics and Capabilities							
	Key Characteristics	Gartner BI Platforms Core Capabilities	Gartner Hype Cycle				
BI&A 1.0	DBMS-based, structured content RDBMS & data warehousing ETL & OLAP Dashboards & scorecards Data mining & statistical analysis	 Ad hoc query & search-based BI Reporting, dashboards & scorecards OLAP Interactive visualization Predictive modeling & data mining 	Column-based DBMS In-memory DBMS Real-time decision Data mining workbenches				
BI&A 2.0	Web-based, unstructured content Information retrieval and extraction Opinion mining Question answering Web analytics and web intelligence Social media analytics Social network analysis Spatial-temporal analysis		Information semantic services Natural language question answering Content & text analytics				
BI&A 3.0	Mobile and sensor-based content • Location-aware analysis • Person-centered analysis • Context-relevant analysis • Mobile visualization & HCI		Mobile BI				

E-Government

E-Government 2.0

- From digitization/digitalization to digital transformation
- The more quality and accurate data is available, the better the public decisions
- The faster data is available, the faster public decisions

Big Data Analytics

Table 2. Bl&A Applications: From Big Data to Big Impact								
Table 2. Bid	E-Commerce and Market Intelligence	E-Government and Politics 2.0	Science & Technology	Smart Health and Wellbeing	Security and Public Safety			
Applications	Recommender systems Social media monitoring and analysis Crowd-sourcing systems Social and virtual games	Ubiquitous government services Equal access and public services Citizen engagement and participation Political campaign and e-polling	S&T innovation Hypothesis testing Knowledge discovery	Human and plant genomics Healthcare decision support Patient community analysis	Crime analysis Computational criminology Terroris m informatics Open-source intelligence Cyber security			
Data	Search and user logs Customer transaction records Customer- generated content	Government information and services Rules and regulations Citizen feedback and comments	S&T instruments and system-generated data Sensor and network content	Genomics and sequence data Electronic health records (EHR) Health and patient social media	Criminal records Crime maps Crime maps Criminal networks News and web contents Terrorism incident databases Viruses, cyber attacks, and botnets			
	Characteristics: Structured web- based, user- generated content, rich network informa- tion, unstructured informal customer opinions	Characteristics: Fragmented information sources and legacy systems, rich textual content, unstructured informal citizen conversations	Characteristics: High-throughput instrument-based data collection, fine- grained multiple- modality and large- scale records, S&T specific data formats	Characteristics: Disparate but highly linked content, person-specific content, HIPAA, IRB and ethics issues	Characteristics: Personal identity information, incom- plete and deceptive content, rich group and network infor- mation, multilingual content			
Analytics	Association rule mining Database segmentation and clustering Anomaly detection Graph mining Social network analysis Text and web analytics Sentiment and affect analysis	Information integration Content and text analytics Government information semantic services and ontologies Social media monitoring and analysis Social network analysis Sentiment and affect analysis	S&T based domain-specific mathematical and analytical models	Genomics and sequence analysis and visualization EHR association mining and clustering Health social media monitoring and analysis Health text analytics Health ontologies Patient network analysis Adverse drug side-effect analysis Privacy-preserving data mining	Criminal association rule mining and clustering Criminal network analysis Spatial-temporal analysis and visualization Multilingual text analytics Sentiment and affect analysis Cyber attacks analysis and attribution			
Impacts	Long-tail marketing, targeted and person- alized recommenda- tion, increased sale and customer satisfaction	Transforming govern- ments, empowering citizens, improving transparency, partici- pation, and equality	S&T advances, scientific impact	Improved healthcare quality, improved long-term care, patient empower- ment	Improved public safety and security			

Unbalanced Speed

- Technology evolves and is adopted very rapidly, but policymaking practices change slowly
- Primary focus on creating and gathering, rather than using
- Policymaking concerns the long term and cannot adapt to the speed of data gathering
- The speed of policymaking is constrained by public administration and political dynamics

Shortage of Resources

- Government is often lack of sufficient resources and investments in big data analytics
- Strong conservative culture against change
- Shortage of financial investment
- Without top management support
- Lack of qualified skills, internally and externally
- Zero tolerance for experimentation and failure

People, Not Technology

- The most challenging part is transforming people, rather than adopting new technology
- Difficult in integrating big data analytics with current work practices
- Fear of being replaced, though it is useful
- Passive, active and aggressive resistance behavior
- Knowledge gap between administrative and technical staffs (translation is needed)

Chase of Size

- How bigger doesn't always mean better in policymaking
- Substantial representativeness problems
- More "noise" than "meaning"
- Better is not objective, but context-specific

Privacy

- The privacy dilemma: If we speak of data it needs to mirror reality as closely as possible; in order to avoid privacy issues, we need to distort data
- Privacy essentially challenges the assumption on accuracy of big data
- Privacy requires more sophisticated technical and analytical approaches than what we have now

Strengthening integration between graphening integrations & technology Operating reliable, secure systems Co-creating with citizens & businesses, creating adoption of technology, Secure & Reliable Integrating services around citizen & business needs DIGITAL GOVERNMENT Digital to the Core Baising of Saising Coasilities on Interest PUBLIC OFFICERS Digitally Enabled Building common digital & data platforms

Solutions

- Investing sufficient resources
- Gaining support from top management
- Developing systematic data-centric strategies
- Offering training and transition plans
- Accumulating a diverse, qualified workforce
- Embedding data in work practices
- Fostering a changing, innovative culture
- Holding reasonable risk tolerance

Case

311 ondemand services

- The city of Houston is ranked the 4th in the list of top 10 largest metro areas in the U.S. with a population of 7 million people, and the 30th largest economy in the world with annual gross metropolitan product (GMP) of 500 billion USD
- In February 1997, The U.S. Federal Communication Commission (PCC) created the 311 number for nonemergency police and government service with the goal of relieving congestion on the emergency number 911
- Many cities, including Houston, since have adopted 311 as a way of centralizing public service issues for city government to streamline processes and more effectively respond to their citizens' service and information needs

Case

311 ondemand services

- Sufficient resource investment: The city has significantly invested in enterprise systems, cloud computing, big data analytics and IT workforce, supporting transition from a call center to 360 selfservice channels allowing citizen engagement
- Data-driven strategic vision: Mayor
 Annise Parker outlined strategic vision
 of "data-driven government" in 2010
 and created the Performance
 Improvement Division and Portal in
 2011 for continuous improvement of
 public services
- Integration of data and work: Houston 311 localizes big data analytics use at the department level, making leaders and departments more responsive to the need for citizens' needs and some department to achieve new levels of operational flexibility and efficiency

Case

311 ondemand services

- Big data analytics empowers the government for self-organization: monitoring emerging trends across 2 million calls and to gain new insights into the potential cost-saving efficiency for 22 departments
- Big data analytics enables effective service process: 1300 → 450 FTEs for 1.4 → 2.2 million citizens; quick decisions on effective solutions on the on-demand services delivery
- Big data analytics also moves citizens from physical channels to digital channels: 311 hotline is more costly than website or mobile app in digitization and accuracy of data collection → annual cost savings of 500,000 USD

