Zuidlaardermeer

System analysis with PCLake

European Regional Development Fund EUROPEAN UNION

Hermen Klomp, waterschap Hunze en Aa's

Zuidlaardermeer

Zuidlaardermeer

Approx. 650 ha Shallow 1.2 m avg, turbid Open system, part of Hunze water system Natura 2000 area

Soil: Peat and Sand

Tot P summer avg: 0.07 mg/l Tot N summer avg: 1.7 mg/l Secchi depth summer avg: 50 cm

Chlorofyl summer avg: 60 ug/l Fish: 150 kg/ha, 95% bream Submerged water plants: only wind-low area's

Ecological key factors

- Water balance & retention time

- Phosphorous balance \rightarrow current load

Critical load

Invoer modelrun			
Diepte	1.16 m		
Aandeel moeras	0.10 (ratio)		
Strijklengte	1865 m		
Debiet	20 mm/d		
Extinctie	0.5 m		
Sedimenttype	veen		

Metamodel PCLake http://themasites.pbl.nl/modellen/pclake/

Critical load

Invoer modelrun		
Diepte	1.16 m	
Aandeel moeras	0.10 (ratio)	
Strijklengte	1865 m	
Debiet	20 mm/d	
Extinctie	0.5 m	
Sedimenttype	veen	

Critical load

Invoer modelrun		
Diepte	1.16 m	
Aandeel moeras	0.10 (ratio)	
Strijklengte	1865 m	
Debiet	20 mm/d	
Extinctie	0.5 m	
Sedimenttype	veen	

Critical load

Invoer modelrun		
Diepte	1.16 m	
Aandeel moeras	0.10 (ratio)	
Strijklengte	1865 m	
Debiet	20 mm/d	
Extinctie	0.5 m	
Sedimenttype	veen	

Critical load

Invoer modelrun			
Diepte	1.16 m		
Aandeel moeras	0.10 (ratio)		
Strijklengte	1865 m		
Debiet	20 mm/d		
Extinctie	0.5 m		
Sedimenttype	veen		

Resultaat modelrun				
Helder naar troebel	2.16 mg P/m ² /d 0.79 g P/m ² /jaar			
Troebel naar helder	1.48 mg P/m ² /d 0.54 g P/m ² /jaar			
Verblijftijd	58 dagen			

Summer average

- Scenario analysis with full model (Witteveen+Bos, 2013)

Scenario	waterlevel	dredging	marsh	islands to reduce wind fetch
0	0,53 – 0,53	No	No	No
1	0,53 – 0,65	No	No	No
2	0,40 - 0,70	No	No	No
4a	0,53 – 0,53	Yes	No	No
5b	0,40 - 0,70	No	Yes	No
7b	0,40 - 0,70	Yes	Yes	Yes
8	0,40 - 0,70	Yes	Yes	No

- Effect water level on critical load

kP (mg/m²/d)	waterpeil (m NAP)	troebel -> helder (mg/m²/d)	helder -> troebel (mg/m²/d)
jaar	0,49-0,49	2,9	4,0
	0,53-0,53	2,7	3,6
	0,53-0,65	2,1	2,9
	0,4-0,7	1,9	2,8
zomer	0,49-0,49	2,0	2,7
	0,53-0,53	1,8	2,5
	0,53-0,65	1,4	2,0
	0,4-0,7	1,3	1,9
winter	0,49-0,49	3,8	5,6
	0,53-0,53	3,4	4,9
	0,53-0,65	2,7	4,0
	0,4-0,7	2,5	3,7

Tabel 3.1. De kritische grenzen in mg/m²/d voor verschillende peilinstellingen

Static, without effect on development of swamp area's!

- Effect water level on chlorofyl

- Effect water level on cover of submerged vegetation

zone

huidig functionerend moeras

zone achter luwte-eilanden

wateroppervlak Zuidlaardermeer*

totaal potentieel moeras

nog te ontwikkelen nieuwe moeraszone

- Improve exchange between marsh areas and lake, development of extra marsh areas

222 567*

Full scale model

- Improve exchange between marsh areas and lake, development of extra marsh areas

Tabel 4.2. De kritische grenzen in mg/m²/d voor verschillende moerasgroottes

kP (mg/m²/d)		UWC0.5		UWC1		
	%moeras	troebel -> helder	helder -> troebel	troebel -> helder	helder -> troebel	
jaar	0	2	3	2	3	
	3	2	3	2	3	
	12	3	4	4	5	
	16	4	5	5	6	
	39	8	10	11	12	
zomer	0	1	2	1	2	
	3	2	2	2	2	
	12	2	3	3	4	
	16	3	4	4	5	
	39	7	8	9	9	
winter	0	3	4	3	4	
	3	3	4	3	4	
	12	4	6	4	7	
	16	4	7	6	8	
	39	9	12	13	14	

Full scale model

- Improve exchange between marsh areas and lake, development of extra marsh areas

code	beschrijving	ha	% moe-	run-ID's	run-ID's	strijk-
		cumulatief	ras	UWC = 0,5	UWC*= 1	lengte
0	scen 0	-	-	0		1865
1	opp. ZLM	567	-			
2	waterriet	17	3 %	1	2	1865
3	pot.moeras na doorsteken	66	11 %	3	4	1865
4	waterriet + pot. moeras	91	16 %	5	6	1865

- Reduce wind fetch with 'islands'

Tabel 5.1. De kritische grenzen in mg/m²/d voor met en zonder luwte-eilanden. Indien geen moeraszone ontstaat achter luwte-eilanden wordt alleen het overige potentiële moeras meegenomen (=25 %). UWC=1

kP (ma/m ² /d)	moeras%		troebel -> helder	helder -> troebel
(ing/in/d)	1110010370			
jaar	0	referentie, geen moeras	2	3
	25	geen moeras achter luwte-eilanden	8	9
	39	moeras achter luwte-eilanden	11	12
zomer	0	referentie, geen moeras	1	2
	25	geen moeras achter luwte-eilanden	6	7
	39	moeras achter luwte-eilanden	9	9
winter	0	referentie, geen moeras	3	4
	25	geen moeras achter luwte-eilanden	9	12
	39	moeras achter luwte-eilanden	13	14

Full scale model

Wind low area becomes marsh:

Afbeelding 5.2. Het percentage vegetatiebedekking voor scenario 2, luwte-eilanden met een UWC van 0,5 en luwte-eilanden met een UWC van 1

Wind low area does NOT become marsh:

Afbeelding 5.4. Het percentage vegetatiebedekking voor scenario 2 en voor de maatregel luwte-eilanden zonder moerasontwikkeling

Combining measures: dredging, marsh areas in contact with lake (16% of lake area) and reducing wind fetch with islands (windlow, not marsh), Steady waterlevel

Afbeelding 6.2. Het bedekkingspercentage vegetatie voor scenario 0 en scenario 8

Conclusions

- Connecting marsh areas to lake can be effective for shifting the watersystem from turbid to clear water.
- Exchange coefficient is very sensitive in the model (and hard to estimate)
- Measures in Hunze area will also have it's effects on the lake (on P-load and sediment inflow)
 For example: reduction of loads from sewage treatment plant in Gieten or remeandering and creating marsh areas along river side
- This can also be modeled in PCLake

Questions?

